Menu Close

Question-175066




Question Number 175066 by peter frank last updated on 17/Aug/22
Answered by mr W last updated on 17/Aug/22
Commented by mr W last updated on 17/Aug/22
T_1 =m_1 g sin 30°+m_1 a_1   T_2 =m_2 g sin 45°+m_2 a_2   m_3 (a_1 cos 30°+a_2  cos 45°)=m_3 g−T_1  cos 30°−T_2  cos 45°  m_3 (a_1 cos 30°+a_2  cos 45°)=m_3 g−(m_1 g sin 30°+m_1 a_1 ) cos 30°−(m_2 g sin 45°+m_2 a_2 ) cos 45°  ⇒(m_1 +m_3 )a_1  cos 30°+(m_2 +m_3 )a_2  cos 45°=(m_3 −m_1  sin 30°cos 30°−m_2  sin 45°cos 45°)g  ⇒32(√3)a_1 +22(√2)a_2 =(32−7(√3))g    ...(i)  m_3 (a_1 sin 30°−a_2 sin 45°)=T_2 sin 45°−T_1 sin 30°  m_3 (a_1 sin 30°−a_2 sin 45°)=(m_2 g sin 45°+m_2 a_2 )sin 45°−(m_1 g sin 30°+m_1 a_1 )sin 30°  ⇒(m_1 +m_3 )a_1 sin 30°−(m_2 +m_3 )a_2 sin 45°=(m_2  sin^2  45°−m_1  sin^2  30°)g  ⇒32a_1 −22(√2)a_2 =−3g   ...(ii)  (i)+(ii):  32(1+(√3))a_1 =(29−7(√3))g  ⇒a_1 =(((18(√3)−25)g)/(32))≈0.193g  ⇒a_2 =(((9(√3)−11)(√2)g)/(22))≈0.295g  a_3 =(√(a_1 ^2 +a_2 ^2 +2a_1 a_2  cos 75°))≈0.392g
T1=m1gsin30°+m1a1T2=m2gsin45°+m2a2m3(a1cos30°+a2cos45°)=m3gT1cos30°T2cos45°m3(a1cos30°+a2cos45°)=m3g(m1gsin30°+m1a1)cos30°(m2gsin45°+m2a2)cos45°(m1+m3)a1cos30°+(m2+m3)a2cos45°=(m3m1sin30°cos30°m2sin45°cos45°)g323a1+222a2=(3273)g(i)m3(a1sin30°a2sin45°)=T2sin45°T1sin30°m3(a1sin30°a2sin45°)=(m2gsin45°+m2a2)sin45°(m1gsin30°+m1a1)sin30°(m1+m3)a1sin30°(m2+m3)a2sin45°=(m2sin245°m1sin230°)g32a1222a2=3g(ii)(i)+(ii):32(1+3)a1=(2973)ga1=(18325)g320.193ga2=(9311)2g220.295ga3=a12+a22+2a1a2cos75°0.392g
Commented by Tawa11 last updated on 17/Aug/22
Great sir
Greatsir
Commented by peter frank last updated on 18/Aug/22
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *