Question Number 175066 by peter frank last updated on 17/Aug/22
Answered by mr W last updated on 17/Aug/22
Commented by mr W last updated on 17/Aug/22
$${T}_{\mathrm{1}} ={m}_{\mathrm{1}} {g}\:\mathrm{sin}\:\mathrm{30}°+{m}_{\mathrm{1}} {a}_{\mathrm{1}} \\ $$$${T}_{\mathrm{2}} ={m}_{\mathrm{2}} {g}\:\mathrm{sin}\:\mathrm{45}°+{m}_{\mathrm{2}} {a}_{\mathrm{2}} \\ $$$${m}_{\mathrm{3}} \left({a}_{\mathrm{1}} \mathrm{cos}\:\mathrm{30}°+{a}_{\mathrm{2}} \:\mathrm{cos}\:\mathrm{45}°\right)={m}_{\mathrm{3}} {g}−{T}_{\mathrm{1}} \:\mathrm{cos}\:\mathrm{30}°−{T}_{\mathrm{2}} \:\mathrm{cos}\:\mathrm{45}° \\ $$$${m}_{\mathrm{3}} \left({a}_{\mathrm{1}} \mathrm{cos}\:\mathrm{30}°+{a}_{\mathrm{2}} \:\mathrm{cos}\:\mathrm{45}°\right)={m}_{\mathrm{3}} {g}−\left({m}_{\mathrm{1}} {g}\:\mathrm{sin}\:\mathrm{30}°+{m}_{\mathrm{1}} {a}_{\mathrm{1}} \right)\:\mathrm{cos}\:\mathrm{30}°−\left({m}_{\mathrm{2}} {g}\:\mathrm{sin}\:\mathrm{45}°+{m}_{\mathrm{2}} {a}_{\mathrm{2}} \right)\:\mathrm{cos}\:\mathrm{45}° \\ $$$$\Rightarrow\left({m}_{\mathrm{1}} +{m}_{\mathrm{3}} \right){a}_{\mathrm{1}} \:\mathrm{cos}\:\mathrm{30}°+\left({m}_{\mathrm{2}} +{m}_{\mathrm{3}} \right){a}_{\mathrm{2}} \:\mathrm{cos}\:\mathrm{45}°=\left({m}_{\mathrm{3}} −{m}_{\mathrm{1}} \:\mathrm{sin}\:\mathrm{30}°\mathrm{cos}\:\mathrm{30}°−{m}_{\mathrm{2}} \:\mathrm{sin}\:\mathrm{45}°\mathrm{cos}\:\mathrm{45}°\right){g} \\ $$$$\Rightarrow\mathrm{32}\sqrt{\mathrm{3}}{a}_{\mathrm{1}} +\mathrm{22}\sqrt{\mathrm{2}}{a}_{\mathrm{2}} =\left(\mathrm{32}−\mathrm{7}\sqrt{\mathrm{3}}\right){g}\:\:\:\:…\left({i}\right) \\ $$$${m}_{\mathrm{3}} \left({a}_{\mathrm{1}} \mathrm{sin}\:\mathrm{30}°−{a}_{\mathrm{2}} \mathrm{sin}\:\mathrm{45}°\right)={T}_{\mathrm{2}} \mathrm{sin}\:\mathrm{45}°−{T}_{\mathrm{1}} \mathrm{sin}\:\mathrm{30}° \\ $$$${m}_{\mathrm{3}} \left({a}_{\mathrm{1}} \mathrm{sin}\:\mathrm{30}°−{a}_{\mathrm{2}} \mathrm{sin}\:\mathrm{45}°\right)=\left({m}_{\mathrm{2}} {g}\:\mathrm{sin}\:\mathrm{45}°+{m}_{\mathrm{2}} {a}_{\mathrm{2}} \right)\mathrm{sin}\:\mathrm{45}°−\left({m}_{\mathrm{1}} {g}\:\mathrm{sin}\:\mathrm{30}°+{m}_{\mathrm{1}} {a}_{\mathrm{1}} \right)\mathrm{sin}\:\mathrm{30}° \\ $$$$\Rightarrow\left({m}_{\mathrm{1}} +{m}_{\mathrm{3}} \right){a}_{\mathrm{1}} \mathrm{sin}\:\mathrm{30}°−\left({m}_{\mathrm{2}} +{m}_{\mathrm{3}} \right){a}_{\mathrm{2}} \mathrm{sin}\:\mathrm{45}°=\left({m}_{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\mathrm{45}°−{m}_{\mathrm{1}} \:\mathrm{sin}^{\mathrm{2}} \:\mathrm{30}°\right){g} \\ $$$$\Rightarrow\mathrm{32}{a}_{\mathrm{1}} −\mathrm{22}\sqrt{\mathrm{2}}{a}_{\mathrm{2}} =−\mathrm{3}{g}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{32}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right){a}_{\mathrm{1}} =\left(\mathrm{29}−\mathrm{7}\sqrt{\mathrm{3}}\right){g} \\ $$$$\Rightarrow{a}_{\mathrm{1}} =\frac{\left(\mathrm{18}\sqrt{\mathrm{3}}−\mathrm{25}\right){g}}{\mathrm{32}}\approx\mathrm{0}.\mathrm{193}{g} \\ $$$$\Rightarrow{a}_{\mathrm{2}} =\frac{\left(\mathrm{9}\sqrt{\mathrm{3}}−\mathrm{11}\right)\sqrt{\mathrm{2}}{g}}{\mathrm{22}}\approx\mathrm{0}.\mathrm{295}{g} \\ $$$${a}_{\mathrm{3}} =\sqrt{{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2}{a}_{\mathrm{1}} {a}_{\mathrm{2}} \:\mathrm{cos}\:\mathrm{75}°}\approx\mathrm{0}.\mathrm{392}{g} \\ $$
Commented by Tawa11 last updated on 17/Aug/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by peter frank last updated on 18/Aug/22
$$\mathrm{thank}\:\mathrm{you} \\ $$