Menu Close

Question-175121




Question Number 175121 by Michaelfaraday last updated on 20/Aug/22
Answered by BaliramKumar last updated on 20/Aug/22
(3^(−1) )^((x^2 −2x)/(16−2x^3 ))  = (3^2 )^(1/(4x))   3^((((x^2 −2x)/(2x^3 −16))))  = 3^(((2/(4x))))   ((x^2 −2x)/(2(x^3 −8))) = (2/(4x))  ((x^2 −2x)/(x^3 −8)) = (1/x)  x^3 −8 = x^3 −2x^2   2x^2  = 8  x = ±2
$$\left(\mathrm{3}^{−\mathrm{1}} \right)^{\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{16}−\mathrm{2}{x}^{\mathrm{3}} }} \:=\:\left(\mathrm{3}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}{x}}} \\ $$$$\mathrm{3}^{\left(\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{16}}\right)} \:=\:\mathrm{3}^{\left(\frac{\mathrm{2}}{\mathrm{4}{x}}\right)} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{2}\left({x}^{\mathrm{3}} −\mathrm{8}\right)}\:=\:\frac{\mathrm{2}}{\mathrm{4}{x}} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{{x}^{\mathrm{3}} −\mathrm{8}}\:=\:\frac{\mathrm{1}}{{x}} \\ $$$${x}^{\mathrm{3}} −\mathrm{8}\:=\:{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:=\:\mathrm{8} \\ $$$${x}\:=\:\pm\mathrm{2} \\ $$
Commented by Frix last updated on 20/Aug/22
+2 is wrong because ((x^2 −2x)/(16−2x^3 )) is not defined
$$+\mathrm{2}\:\mathrm{is}\:\mathrm{wrong}\:\mathrm{because}\:\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{16}−\mathrm{2}{x}^{\mathrm{3}} }\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined} \\ $$
Commented by Tawa11 last updated on 20/Aug/22
Great sirs
$$\mathrm{Great}\:\mathrm{sirs} \\ $$
Commented by peter frank last updated on 24/Aug/22
good
$$\mathrm{good} \\ $$
Answered by Frix last updated on 20/Aug/22
((x^2 −2x)/(16−2x^3 ))=−(x/(2(x^2 +2x+4)))  3^(x/(2(x^2 +2x+4))) =3^(1/(2x))   (x/(2(x^2 +2x+4)))=(1/(2x))  4x+8=0  x=−2
$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{16}−\mathrm{2}{x}^{\mathrm{3}} }=−\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}\right)} \\ $$$$\mathrm{3}^{\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}\right)}} =\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} \\ $$$$\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}\right)}=\frac{\mathrm{1}}{\mathrm{2}{x}} \\ $$$$\mathrm{4}{x}+\mathrm{8}=\mathrm{0} \\ $$$${x}=−\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *