Question Number 175305 by cortano1 last updated on 26/Aug/22
Answered by mr W last updated on 27/Aug/22
$${let}\:{t}=\frac{{x}}{\mathrm{6}} \\ $$$$\mathrm{6}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{36}}} \frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{t}}{\mathrm{sin}\:\mathrm{3}{t}}{dt} \\ $$$$=\mathrm{12}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{36}}} \frac{\mathrm{sin}^{\mathrm{2}} \:{t}}{\mathrm{sin}\:{t}\:\left(\mathrm{3}−\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:{t}\right)}{dt} \\ $$$$=\mathrm{12}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{36}}} \frac{\mathrm{sin}\:{t}}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:{t}−\mathrm{1}}{dt} \\ $$$$=\mathrm{12}\int_{\frac{\pi}{\mathrm{36}}} ^{\mathrm{0}} \frac{{d}\left(\mathrm{cos}\:{t}\right)}{\left(\mathrm{2}\:\mathrm{cos}\:{t}+\mathrm{1}\right)\left(\mathrm{2}\:\mathrm{cos}\:{t}−\mathrm{1}\right)} \\ $$$$=\mathrm{12}\int_{\mathrm{cos}\:\frac{\pi}{\mathrm{36}}} ^{\mathrm{1}} \frac{{du}}{\left(\mathrm{2}{u}+\mathrm{1}\right)\left(\mathrm{2}{u}−\mathrm{1}\right)} \\ $$$$=\mathrm{6}\int_{\mathrm{cos}\:\frac{\pi}{\mathrm{36}}} ^{\mathrm{1}} \left(\frac{{du}}{\mathrm{2}{u}−\mathrm{1}}−\frac{{du}}{\mathrm{2}{u}+\mathrm{1}}\right) \\ $$$$=\mathrm{3}\left[\mathrm{ln}\:\frac{\mathrm{2}{u}−\mathrm{1}}{\mathrm{2}{u}+\mathrm{1}}\right]_{\mathrm{cos}\:\frac{\pi}{\mathrm{36}}} ^{\mathrm{1}} \\ $$$$=\mathrm{3}\left[\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{ln}\:\frac{\mathrm{2}\:\mathrm{cos}\:\frac{\pi}{\mathrm{36}}−\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\frac{\pi}{\mathrm{36}}+\mathrm{1}}\right] \\ $$$$=\mathrm{3}\:\mathrm{ln}\:\frac{\mathrm{2}\:\mathrm{cos}\:\frac{\pi}{\mathrm{36}}+\mathrm{1}}{\mathrm{3}\left(\mathrm{2}\:\mathrm{cos}\:\frac{\pi}{\mathrm{36}}−\mathrm{1}\right)} \\ $$
Commented by cortano1 last updated on 27/Aug/22
$${yes}==={thanks}\:{you} \\ $$
Commented by Tawa11 last updated on 27/Aug/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$