Menu Close

Question-175396




Question Number 175396 by Shrinava last updated on 29/Aug/22
Answered by mahdipoor last updated on 29/Aug/22
x+y^2 (√(2/(x^2 +y^2 )))≥y+(√((x^2 +y^2 )/2))   ⇔  (x+y^2 (√(2/(x^2 +y^2 ))))((√((x^2 +y^2 )/2)))≥(y+(√((x^2 +y^2 )/2)))((√((x^2 +y^2 )/2)))   ⇔  x(√((x^2 +y^2 )/2))+y^2 ≥y(√((x^2 +y^2 )/2))+((x^2 +y^2 )/2)   ⇔  (x−y)(√((x^2 +y^2 )/2))≥((x^2 −y^2 )/2)=(((x−y)(x+y))/2)   ⇔^I   (√(((x^2 +y^2 )/2)≥))((x+y)/2) ⇔^(II)  ((x^2 +y^2 )/2)≥((x^2 +y^2 +2xy)/4) ⇔  ((x^2 +y^2 −2xy)/4)=(((x−y)^2 )/4)≥0    I : x−y≥0   or  x≥y  II :  x + y≥0
$${x}+{y}^{\mathrm{2}} \sqrt{\frac{\mathrm{2}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\geqslant{y}+\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}\:\:\:\Leftrightarrow \\ $$$$\left({x}+{y}^{\mathrm{2}} \sqrt{\frac{\mathrm{2}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\right)\left(\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}\right)\geqslant\left({y}+\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}\right)\left(\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}\right)\:\:\:\Leftrightarrow \\ $$$${x}\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}+{y}^{\mathrm{2}} \geqslant{y}\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}+\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}\:\:\:\Leftrightarrow \\ $$$$\left({x}−{y}\right)\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}\geqslant\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{\mathrm{2}}=\frac{\left({x}−{y}\right)\left({x}+{y}\right)}{\mathrm{2}}\:\:\:\overset{\mathrm{I}} {\Leftrightarrow} \\ $$$$\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}\geqslant}\frac{{x}+{y}}{\mathrm{2}}\:\overset{\mathrm{II}} {\Leftrightarrow}\:\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}\geqslant\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy}}{\mathrm{4}}\:\Leftrightarrow \\ $$$$\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xy}}{\mathrm{4}}=\frac{\left({x}−{y}\right)^{\mathrm{2}} }{\mathrm{4}}\geqslant\mathrm{0}\:\: \\ $$$$\mathrm{I}\::\:{x}−{y}\geqslant\mathrm{0}\:\:\:{or}\:\:{x}\geqslant{y} \\ $$$$\mathrm{II}\::\:\:{x}\:+\:{y}\geqslant\mathrm{0}\:\: \\ $$
Answered by MJS_new last updated on 29/Aug/22
let y=px with p>0  x(((√2)p^2 +(√(p^2 +1)))/( (√(p^2 +1))))≥x(((√2)p+(√(p^2 +1)))/( (√2)))  (((√2)p^2 +(√(p^2 +1)))/( (√(p^2 +1))))≥(((√2)p+(√(p^2 +1)))/( (√2)))  2p^2 +(√(2(p^2 +1)))≥p^2 +1+p(√(2(p^2 +1)))  (p−1)(p+1−(√(2(p^2 +1))))≥0  only true for 0<p≤1  ⇒ only true for 0<y≤x
$$\mathrm{let}\:{y}={px}\:\mathrm{with}\:{p}>\mathrm{0} \\ $$$${x}\frac{\sqrt{\mathrm{2}}{p}^{\mathrm{2}} +\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}\geqslant{x}\frac{\sqrt{\mathrm{2}}{p}+\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt{\mathrm{2}}} \\ $$$$\frac{\sqrt{\mathrm{2}}{p}^{\mathrm{2}} +\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}\geqslant\frac{\sqrt{\mathrm{2}}{p}+\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{2}{p}^{\mathrm{2}} +\sqrt{\mathrm{2}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}\geqslant{p}^{\mathrm{2}} +\mathrm{1}+{p}\sqrt{\mathrm{2}\left({p}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\left({p}−\mathrm{1}\right)\left({p}+\mathrm{1}−\sqrt{\mathrm{2}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{only}\:\mathrm{true}\:\mathrm{for}\:\mathrm{0}<{p}\leqslant\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{only}\:\mathrm{true}\:\mathrm{for}\:\mathrm{0}<{y}\leqslant{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *