Question Number 175706 by daus last updated on 05/Sep/22
Commented by daus last updated on 05/Sep/22
$${just}\:{help}\:{me}\:{in}\:\:{j},{k},{l}\: \\ $$
Answered by mahdipoor last updated on 05/Sep/22
$${j}:\mid\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{3}}\mid=\mathrm{1}\:\Rightarrow\:\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{3}}=\pm\mathrm{1}\:\Rightarrow\: \\ $$$${x}=\frac{\mp\mathrm{3}−\mathrm{1}}{\mathrm{2}\mp\mathrm{1}}=−\mathrm{4}\:{and}\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\left(−\infty,−\mathrm{4}\right)\:\Rightarrow\:\mid\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{3}}\mid>\mathrm{1} \\ $$$$\left(−\mathrm{4},\frac{\mathrm{2}}{\mathrm{3}}\right)\:\Rightarrow\:\mid\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{3}}\mid<\mathrm{1} \\ $$$$\left(\frac{\mathrm{2}}{\mathrm{3}},+\infty\right)\:\Rightarrow\:\mid\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{3}}\mid>\mathrm{1}\: \\ $$$${you}\:{can}\:{answer}\:{k}\:\&\:{l}\:{like}\:{this}\:… \\ $$
Commented by Tawa11 last updated on 05/Sep/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by cortano1 last updated on 05/Sep/22
$$\left(\mathrm{l}\right)\:\mid\frac{\mathrm{x}−\mathrm{3}}{\mathrm{x}+\mathrm{1}}\mid<\mathrm{2}\:,\:\mathrm{x}\neq−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\mid\mathrm{x}−\mathrm{3}\mid<\mid\mathrm{2x}+\mathrm{2}\mid \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{3x}−\mathrm{1}\right)\left(−\mathrm{x}−\mathrm{5}\right)<\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{3x}−\mathrm{1}\right)\left(\mathrm{x}+\mathrm{5}\right)>\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{x}<−\mathrm{5}\:\vee\:\mathrm{x}>\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\left(−\infty,−\mathrm{5}\right)\:\cup\:\left(\frac{\mathrm{1}}{\mathrm{3}},\infty\right) \\ $$