Menu Close

Question-175709




Question Number 175709 by Shrinava last updated on 05/Sep/22
Answered by mr W last updated on 05/Sep/22
r=radius of small circle  R=radius of big semicircle  πr^2 =4π ⇒r=2  R=((3+x)/2)  (R−r)^2 =r^2 +(R−3)^2   2R(3−r)=9  R=(9/(2(3−r)))=(9/2)  ((3+x)/2)=(9/2)  ⇒x=6
$${r}={radius}\:{of}\:{small}\:{circle} \\ $$$${R}={radius}\:{of}\:{big}\:{semicircle} \\ $$$$\pi{r}^{\mathrm{2}} =\mathrm{4}\pi\:\Rightarrow{r}=\mathrm{2} \\ $$$${R}=\frac{\mathrm{3}+{x}}{\mathrm{2}} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} +\left({R}−\mathrm{3}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{R}\left(\mathrm{3}−{r}\right)=\mathrm{9} \\ $$$${R}=\frac{\mathrm{9}}{\mathrm{2}\left(\mathrm{3}−{r}\right)}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\frac{\mathrm{3}+{x}}{\mathrm{2}}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{6} \\ $$
Commented by Tawa11 last updated on 05/Sep/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by Shrinava last updated on 06/Sep/22
cool professor thank you
$$\mathrm{cool}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$
Answered by HeferH last updated on 05/Sep/22
    Let R be the radius of the semicircle, Q the    center of this semicircle and  r the radius   of the tangent circle:   r^2 π = 4π   r = 2   OC = 2   QC = R − 3   QO = R − 2   x = QC + R       The triangle OCQ is a right triangle:   (R− 2)^2  = (R− 3)^2  + 2^2    (R− 2)^2  − (R−3)^2  = 4   (R−2 + R − 3)(R−2−(R − 3)) = 4   (2R −5)(1) = 4   R = (9/2)   x = (9/2) − 3 + (9/2) = 6
$$\: \\ $$$$\:{Let}\:{R}\:{be}\:{the}\:{radius}\:{of}\:{the}\:{semicircle},\:{Q}\:{the}\: \\ $$$$\:{center}\:{of}\:{this}\:{semicircle}\:{and}\:\:{r}\:{the}\:{radius} \\ $$$$\:{of}\:{the}\:{tangent}\:{circle}: \\ $$$$\:{r}^{\mathrm{2}} \pi\:=\:\mathrm{4}\pi \\ $$$$\:{r}\:=\:\mathrm{2} \\ $$$$\:{OC}\:=\:\mathrm{2} \\ $$$$\:{QC}\:=\:{R}\:−\:\mathrm{3} \\ $$$$\:{QO}\:=\:{R}\:−\:\mathrm{2} \\ $$$$\:{x}\:=\:{QC}\:+\:{R}\: \\ $$$$\: \\ $$$$\:{The}\:{triangle}\:{OCQ}\:{is}\:{a}\:{right}\:{triangle}: \\ $$$$\:\left({R}−\:\mathrm{2}\right)^{\mathrm{2}} \:=\:\left({R}−\:\mathrm{3}\right)^{\mathrm{2}} \:+\:\mathrm{2}^{\mathrm{2}} \\ $$$$\:\left({R}−\:\mathrm{2}\right)^{\mathrm{2}} \:−\:\left({R}−\mathrm{3}\right)^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\:\left({R}−\mathrm{2}\:+\:{R}\:−\:\mathrm{3}\right)\left({R}−\mathrm{2}−\left({R}\:−\:\mathrm{3}\right)\right)\:=\:\mathrm{4} \\ $$$$\:\left(\mathrm{2}{R}\:−\mathrm{5}\right)\left(\mathrm{1}\right)\:=\:\mathrm{4} \\ $$$$\:{R}\:=\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\:{x}\:=\:\frac{\mathrm{9}}{\mathrm{2}}\:−\:\mathrm{3}\:+\:\frac{\mathrm{9}}{\mathrm{2}}\:=\:\mathrm{6} \\ $$$$\: \\ $$
Commented by Tawa11 last updated on 05/Sep/22
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$
Commented by Shrinava last updated on 06/Sep/22
cool professor thank you
$$\mathrm{cool}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *