Menu Close

Question-176211




Question Number 176211 by adhigenz last updated on 15/Sep/22
Answered by mahdipoor last updated on 15/Sep/22
2021((cos(a+b))/(cosa))sinb=((sina)/(cosa))  2021((cosa.cosb−sina.sinb)/(cosa))sinb=tana  2021cosb.sinb−2021tana.sin^2 b=tana  ⇒tana=((2021cosb.sinb)/(1+2021sin^2 b))=f(b)  max f = max tana   { ((cosb.sinb=((sin2b)/2))),((sin^2 b=((1−cos2b)/2))) :}⇒  f(b)=((sin(2b))/(((2023)/(2021))−cos(2b)))      (get((2023)/(2021))=c)  (df/db)=0 ⇒ cos(2b)=(1/c)  ⇒ sin(2b)=((√(c^2 −1))/c)  max f=(((√(c^2 −1))/c)/(c−1/c))=((√(c^2 −1))/(c^2 −1))=((2021(√(2022)))/(4044))
2021cos(a+b)cosasinb=sinacosa2021cosa.cosbsina.sinbcosasinb=tana2021cosb.sinb2021tana.sin2b=tanatana=2021cosb.sinb1+2021sin2b=f(b)maxf=maxtana{cosb.sinb=sin2b2sin2b=1cos2b2f(b)=sin(2b)20232021cos(2b)(get20232021=c)dfdb=0cos(2b)=1csin(2b)=c21cmaxf=c21/cc1/c=c21c21=202120224044

Leave a Reply

Your email address will not be published. Required fields are marked *