Menu Close

Question-176354




Question Number 176354 by BaliramKumar last updated on 16/Sep/22
Answered by Frix last updated on 16/Sep/22
in △ with sides a, b, c  r=((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/(2(a+b+c)))  in this case r=15
$$\mathrm{in}\:\bigtriangleup\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b},\:{c} \\ $$$${r}=\frac{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}{\mathrm{2}\left({a}+{b}+{c}\right)} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:{r}=\mathrm{15} \\ $$
Commented by BaliramKumar last updated on 16/Sep/22
thanks
$${thanks} \\ $$
Answered by behi834171 last updated on 16/Sep/22
p=((51+52+53)/2)=((156)/2)=78  S=(√(78×27×26×25))=1170  r=(S/p)=((1170)/(78))=15  or:  S=(1/2)×r×51+(1/2)×r×52+(1/2)×r×53  ⇒1170=(1/2)r×156⇒r=15 . ■
$${p}=\frac{\mathrm{51}+\mathrm{52}+\mathrm{53}}{\mathrm{2}}=\frac{\mathrm{156}}{\mathrm{2}}=\mathrm{78} \\ $$$${S}=\sqrt{\mathrm{78}×\mathrm{27}×\mathrm{26}×\mathrm{25}}=\mathrm{1170} \\ $$$$\boldsymbol{{r}}=\frac{\boldsymbol{{S}}}{\boldsymbol{{p}}}=\frac{\mathrm{1170}}{\mathrm{78}}=\mathrm{15} \\ $$$$\boldsymbol{{or}}: \\ $$$$\boldsymbol{{S}}=\frac{\mathrm{1}}{\mathrm{2}}×{r}×\mathrm{51}+\frac{\mathrm{1}}{\mathrm{2}}×{r}×\mathrm{52}+\frac{\mathrm{1}}{\mathrm{2}}×{r}×\mathrm{53} \\ $$$$\Rightarrow\mathrm{1170}=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{r}}×\mathrm{156}\Rightarrow\boldsymbol{{r}}=\mathrm{15}\:.\:\blacksquare \\ $$
Commented by BaliramKumar last updated on 16/Sep/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *