Menu Close

Question-176595




Question Number 176595 by MASANJAJJ last updated on 22/Sep/22
Answered by Rasheed.Sindhi last updated on 22/Sep/22
b)     (2k)^2 +(2k+2)^2 =(2k+4)^2       4k^2 +4k^2 +8k+4=4k^2 +16k+16        2k^2 +2k+1=k^2 +4k+4         k^2 −2k−3=0        (k−3)(k+1)=0        k=3  ∣   k=−1(rejected)  Hypotenuse=2k+4=2(3)+4=10
$$\left.\mathrm{b}\right) \\ $$$$\:\:\:\left(\mathrm{2}{k}\right)^{\mathrm{2}} +\left(\mathrm{2}{k}+\mathrm{2}\right)^{\mathrm{2}} =\left(\mathrm{2}{k}+\mathrm{4}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{4}{k}^{\mathrm{2}} +\mathrm{4}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{4}=\mathrm{4}{k}^{\mathrm{2}} +\mathrm{16}{k}+\mathrm{16} \\ $$$$\:\:\:\:\:\:\mathrm{2}{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1}={k}^{\mathrm{2}} +\mathrm{4}{k}+\mathrm{4} \\ $$$$\:\:\:\:\:\:\:{k}^{\mathrm{2}} −\mathrm{2}{k}−\mathrm{3}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\left({k}−\mathrm{3}\right)\left({k}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:{k}=\mathrm{3}\:\:\mid\:\:\:{k}=−\mathrm{1}\left({rejected}\right) \\ $$$${Hypotenuse}=\mathrm{2}{k}+\mathrm{4}=\mathrm{2}\left(\mathrm{3}\right)+\mathrm{4}=\mathrm{10} \\ $$
Answered by Rasheed.Sindhi last updated on 22/Sep/22
a)  y is Yusufu′s  income, j is Joseph′s income  y:j=4:3;   y=4k,j=3k  4k−600:3k−600=3:2  (4k−600)×2=(3k−600)×3  8k−1200=9k−1800  k=600  y=4×600=2400  (Monthly income of Yusuf)  j=3×600=1800
$$\left.{a}\right) \\ $$$${y}\:{is}\:{Yusufu}'{s}\:\:{income},\:{j}\:{is}\:{Joseph}'{s}\:{income} \\ $$$${y}:{j}=\mathrm{4}:\mathrm{3};\:\:\:{y}=\mathrm{4}{k},{j}=\mathrm{3}{k} \\ $$$$\mathrm{4}{k}−\mathrm{600}:\mathrm{3}{k}−\mathrm{600}=\mathrm{3}:\mathrm{2} \\ $$$$\left(\mathrm{4}{k}−\mathrm{600}\right)×\mathrm{2}=\left(\mathrm{3}{k}−\mathrm{600}\right)×\mathrm{3} \\ $$$$\mathrm{8}{k}−\mathrm{1200}=\mathrm{9}{k}−\mathrm{1800} \\ $$$${k}=\mathrm{600} \\ $$$${y}=\mathrm{4}×\mathrm{600}=\mathrm{2400}\:\:\left({Monthly}\:{income}\:{of}\:{Yusuf}\right) \\ $$$${j}=\mathrm{3}×\mathrm{600}=\mathrm{1800} \\ $$
Commented by Tawa11 last updated on 23/Sep/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *