Menu Close

Question-176816




Question Number 176816 by Ar Brandon last updated on 27/Sep/22
Commented by MJS_new last updated on 27/Sep/22
y=x∧5x+12y=60 ⇒ x=y=((60)/(17))
$${y}={x}\wedge\mathrm{5}{x}+\mathrm{12}{y}=\mathrm{60}\:\Rightarrow\:{x}={y}=\frac{\mathrm{60}}{\mathrm{17}} \\ $$
Commented by Ar Brandon last updated on 27/Sep/22
Oh! Thank you Sir MJS
Commented by cortano1 last updated on 27/Sep/22
D(0,5) ,C(5,5) ,B(12,0),A(0,0)   AC: y=x ; BD : 5x+12y=60   Let F(((60)/(17)) ,((60)/(17)))   α=α_1 +α_2 ⇒sin α=sin (α_1 +α_2 )   = sin α_1  cos α_2 +cos α_1  sin α_2    = (1/( (√2))) .((60)/(156)) +(1/( (√2))) .((144)/(156))  = (1/( (√2))) ((204)/(156)) =((17)/(13(√2)))= ((17(√2))/(26))
$$\mathrm{D}\left(\mathrm{0},\mathrm{5}\right)\:,\mathrm{C}\left(\mathrm{5},\mathrm{5}\right)\:,\mathrm{B}\left(\mathrm{12},\mathrm{0}\right),\mathrm{A}\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\:\mathrm{AC}:\:\mathrm{y}=\mathrm{x}\:;\:\mathrm{BD}\::\:\mathrm{5x}+\mathrm{12y}=\mathrm{60} \\ $$$$\:\mathrm{Let}\:\mathrm{F}\left(\frac{\mathrm{60}}{\mathrm{17}}\:,\frac{\mathrm{60}}{\mathrm{17}}\right) \\ $$$$\:\alpha=\alpha_{\mathrm{1}} +\alpha_{\mathrm{2}} \Rightarrow\mathrm{sin}\:\alpha=\mathrm{sin}\:\left(\alpha_{\mathrm{1}} +\alpha_{\mathrm{2}} \right) \\ $$$$\:=\:\mathrm{sin}\:\alpha_{\mathrm{1}} \:\mathrm{cos}\:\alpha_{\mathrm{2}} +\mathrm{cos}\:\alpha_{\mathrm{1}} \:\mathrm{sin}\:\alpha_{\mathrm{2}} \\ $$$$\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:.\frac{\mathrm{60}}{\mathrm{156}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:.\frac{\mathrm{144}}{\mathrm{156}} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\frac{\mathrm{204}}{\mathrm{156}}\:=\frac{\mathrm{17}}{\mathrm{13}\sqrt{\mathrm{2}}}=\:\frac{\mathrm{17}\sqrt{\mathrm{2}}}{\mathrm{26}} \\ $$
Commented by Ar Brandon last updated on 27/Sep/22
Thanks!  But how to get F(((60)/(17)), ((60)/(17)))?
$$\mathrm{Thanks}! \\ $$$$\mathrm{But}\:\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{F}\left(\frac{\mathrm{60}}{\mathrm{17}},\:\frac{\mathrm{60}}{\mathrm{17}}\right)? \\ $$
Answered by mr W last updated on 27/Sep/22
AC=5(√2)  DB=(√(5^2 +12^2 ))=13  area=((5×(5+12))/2)=((5(√2)×13×sin α)/2)  ⇒sin α=((17)/(13(√2)))=((17(√2))/(26))
$${AC}=\mathrm{5}\sqrt{\mathrm{2}} \\ $$$${DB}=\sqrt{\mathrm{5}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} }=\mathrm{13} \\ $$$${area}=\frac{\mathrm{5}×\left(\mathrm{5}+\mathrm{12}\right)}{\mathrm{2}}=\frac{\mathrm{5}\sqrt{\mathrm{2}}×\mathrm{13}×\mathrm{sin}\:\alpha}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{17}}{\mathrm{13}\sqrt{\mathrm{2}}}=\frac{\mathrm{17}\sqrt{\mathrm{2}}}{\mathrm{26}} \\ $$
Answered by HeferH last updated on 27/Sep/22
    ∠ DCA = 45°   tan (∠DBA) = (5/(12))     ∠ DBA = tan^(−1) ((5/(12))) ≈ 22.7°   a + 45° + 22.7° = 180°   a = 112.3°   sin (112.3°)≈ 0.9
$$\: \\ $$$$\:\angle\:{DCA}\:=\:\mathrm{45}° \\ $$$$\:\mathrm{tan}\:\left(\angle{DBA}\right)\:=\:\frac{\mathrm{5}}{\mathrm{12}}\: \\ $$$$\:\:\angle\:{DBA}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{12}}\right)\:\approx\:\mathrm{22}.\mathrm{7}° \\ $$$$\:{a}\:+\:\mathrm{45}°\:+\:\mathrm{22}.\mathrm{7}°\:=\:\mathrm{180}° \\ $$$$\:{a}\:=\:\mathrm{112}.\mathrm{3}° \\ $$$$\:\mathrm{sin}\:\left(\mathrm{112}.\mathrm{3}°\right)\approx\:\mathrm{0}.\mathrm{9} \\ $$$$\: \\ $$
Commented by Ar Brandon last updated on 27/Sep/22
Thank you ��
Answered by som(math1967) last updated on 27/Sep/22
∠DAC=∠DCA=(π/4)  ∴∠CAB=(π/2)−(π/4)=(π/4)   BD=(√(5^2 +12^2 ))=13  ∴∠ABD=sin^(−1) (5/(13))   a=π−(π/4)−sin^(−1) (5/(13))  sina=sin(((3π)/4) −sin^(−1) (5/(13)))   =sin((3π)/4)cos(sin^(−1) (5/(13)))−cos((3π)/4)sinsin^(−1) (5/(13))  =(1/( (√2)))×((12)/(13)) +(1/( (√2)))×(5/(13)) ★  =((17)/( 13(√2)))=((17(√2))/(26))  ★ cos(sin^(−1) (5/(13)))=cos(cos^(−1) ((12)/(13)))
$$\angle{DAC}=\angle{DCA}=\frac{\pi}{\mathrm{4}} \\ $$$$\therefore\angle{CAB}=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}=\frac{\pi}{\mathrm{4}} \\ $$$$\:{BD}=\sqrt{\mathrm{5}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} }=\mathrm{13} \\ $$$$\therefore\angle{ABD}=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{13}} \\ $$$$\:{a}=\pi−\frac{\pi}{\mathrm{4}}−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{13}} \\ $$$${sina}={sin}\left(\frac{\mathrm{3}\pi}{\mathrm{4}}\:−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{13}}\right) \\ $$$$\:={sin}\frac{\mathrm{3}\pi}{\mathrm{4}}{cos}\left(\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{13}}\right)−{cos}\frac{\mathrm{3}\pi}{\mathrm{4}}{sin}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{13}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{12}}{\mathrm{13}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{5}}{\mathrm{13}}\:\bigstar \\ $$$$=\frac{\mathrm{17}}{\:\mathrm{13}\sqrt{\mathrm{2}}}=\frac{\mathrm{17}\sqrt{\mathrm{2}}}{\mathrm{26}} \\ $$$$\bigstar\:{cos}\left(\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{13}}\right)={cos}\left(\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{12}}{\mathrm{13}}\right) \\ $$
Commented by Ar Brandon last updated on 27/Sep/22
Great! Thanks!
Commented by Tawa11 last updated on 28/Sep/22
Great sirs.
$$\mathrm{Great}\:\mathrm{sirs}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *