Menu Close

Question-176853




Question Number 176853 by Ar Brandon last updated on 27/Sep/22
Answered by som(math1967) last updated on 27/Sep/22
 ((PT)/(TA))=((PR)/(RK))=((PS)/(SE))=(2/3)  let PT=PR=PS=2x   TA=3x  ∴ each side of cube=PT+TA=5x   vol of pyramid=(1/3)×ar△PTS×PR  =(1/3)×(1/2)×2x×2x×2x=((4x^3 )/3)  vol of cube=(5x)^3 =125x^3    ratio of volume of them    ((4x^3 )/3):125x^3     4:375
$$\:\frac{{PT}}{{TA}}=\frac{{PR}}{{RK}}=\frac{{PS}}{{SE}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${let}\:{PT}={PR}={PS}=\mathrm{2}{x}\: \\ $$$${TA}=\mathrm{3}{x} \\ $$$$\therefore\:{each}\:{side}\:{of}\:{cube}={PT}+{TA}=\mathrm{5}{x} \\ $$$$\:{vol}\:{of}\:{pyramid}=\frac{\mathrm{1}}{\mathrm{3}}×{ar}\bigtriangleup{PTS}×{PR} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{x}×\mathrm{2}{x}×\mathrm{2}{x}=\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{3}} \\ $$$${vol}\:{of}\:{cube}=\left(\mathrm{5}{x}\right)^{\mathrm{3}} =\mathrm{125}{x}^{\mathrm{3}} \\ $$$$\:{ratio}\:{of}\:{volume}\:{of}\:{them} \\ $$$$\:\:\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{3}}:\mathrm{125}{x}^{\mathrm{3}} \\ $$$$\:\:\mathrm{4}:\mathrm{375} \\ $$
Commented by Ar Brandon last updated on 27/Sep/22
Thank you Sir
Answered by mr W last updated on 27/Sep/22
3×PT=2×TA   ⇒((PT)/(PA))=(2/5)  similarly   ⇒((PR)/(PK))=(2/5), ((PS)/(PE))=(2/5)  volume of pyramid=((PT×PR×PS)/6)  volume of cube=PA×PK×PE  ((volume of pyramid)/(volume of cube))=((PT×PR×PS)/(6×PA×PK×PE))                                   =(1/6)×((2/5))^3 =(4/(375))
$$\mathrm{3}×{PT}=\mathrm{2}×{TA}\: \\ $$$$\Rightarrow\frac{{PT}}{{PA}}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$$${similarly}\: \\ $$$$\Rightarrow\frac{{PR}}{{PK}}=\frac{\mathrm{2}}{\mathrm{5}},\:\frac{{PS}}{{PE}}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$$${volume}\:{of}\:{pyramid}=\frac{{PT}×{PR}×{PS}}{\mathrm{6}} \\ $$$${volume}\:{of}\:{cube}={PA}×{PK}×{PE} \\ $$$$\frac{{volume}\:{of}\:{pyramid}}{{volume}\:{of}\:{cube}}=\frac{{PT}×{PR}×{PS}}{\mathrm{6}×{PA}×{PK}×{PE}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{6}}×\left(\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{3}} =\frac{\mathrm{4}}{\mathrm{375}} \\ $$
Commented by Ar Brandon last updated on 27/Sep/22
Thank you Sir!

Leave a Reply

Your email address will not be published. Required fields are marked *