Question Number 177432 by HeferH last updated on 05/Oct/22
Commented by Ar Brandon last updated on 05/Oct/22
$$\mathrm{30}°\:? \\ $$
Commented by HeferH last updated on 05/Oct/22
$${I}'{m}\:{not}\:{sure} \\ $$$$\: \\ $$
Commented by Ar Brandon last updated on 05/Oct/22
Commented by HeferH last updated on 05/Oct/22
Commented by HeferH last updated on 05/Oct/22
$$\:{x}\:+\:\alpha\:\:+\:\mathrm{140}°=\mathrm{180} \\ $$$$\:{x}\:=\:\alpha\:+\:\mathrm{20}° \\ $$$$\:{x}\:=\:\mathrm{30}° \\ $$$$\: \\ $$
Commented by Tawa11 last updated on 05/Oct/22
$$\mathrm{Great}\:\mathrm{sirs} \\ $$
Commented by mr W last updated on 05/Oct/22
$${how}\:{can}\:{you}\:{say}\:\alpha=\mathrm{10}°?\:{where}\:{is} \\ $$$${AE}={CD}? \\ $$
Commented by HeferH last updated on 05/Oct/22
$$\:{It}'{s}\:{one}\:{of}\:{those}\:{magic}\:{lines}\: \\ $$$$\: \\ $$
Commented by mr W last updated on 05/Oct/22
$${what}'{s}\:{the}\:{proof}\:{for}\:{its}\:{correctness}? \\ $$
Commented by HeferH last updated on 05/Oct/22
$$\:{I}\:{know}\:{it}'{s}\:{an}\:{insecure}\:{way},\:{but}\:{I}\:{see}\:{so} \\ $$$$\:{many}\:{teachers}\:{draw}\:{certain}\:{lines}\:{that} \\ $$$$\:{at}\:{first}\:{are}\:{valid}\:{but}\:{then}\:{I}\:{think}\:“{That}'{s} \\ $$$$\:{not}\:{possible},\:{is}\:{it}?'',\:{in}\:{this}\:{case}\:{I}'{m} \\ $$$$\:{trusting}\:{that}\:{by}\:{forming}\:\mathrm{140}°\:{with}\:{the}\: \\ $$$$\:{drawn}\:{segment}\:{the}\:{end}\:{terminates}\:{at} \\ $$$$\:{a}\:{point}\:{F}\:{on}\:{AC}\:{such}\:{that}\:{AF}\:=\:{FD}\:=\:{DC} \\ $$$$\: \\ $$$$\:{Probably}\:{I}\:{had}\:{luck} \\ $$
Answered by Ar Brandon last updated on 05/Oct/22
$$\left({i}\right)\:\frac{\mathrm{EB}}{\mathrm{sin40}°}=\frac{{h}}{\mathrm{sin80}°}\:\Rightarrow\mathrm{EB}={h}\frac{\mathrm{sin40}°}{\mathrm{sin80}°}=\frac{{h}}{\mathrm{2cos40}°} \\ $$$$\left({ii}\right)\:{x}+\mathrm{EB}={h}\:\Rightarrow{x}=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2cos40}°}\right){h}=\left(\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right){h} \\ $$$$\left({iii}\right)\:\frac{\mathrm{CE}}{\mathrm{sin60}°}=\frac{{h}}{\mathrm{sin80}°}\:\Rightarrow\mathrm{CE}={h}\frac{\mathrm{sin60}°}{\mathrm{sin80}°} \\ $$$$\left({i}\mathrm{v}\right)\:{x}+\mathrm{DE}=\mathrm{CE}\:\Rightarrow\mathrm{DE}=\mathrm{CE}−{x}=\left(\frac{\mathrm{sin60}°}{\mathrm{sin80}°}−\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right){h} \\ $$$$\mathrm{Applying}\:\mathrm{cosine}\:\mathrm{rule}\:\mathrm{in}\:\bigtriangleup\mathrm{ADE} \\ $$$$\mathrm{AD}=\sqrt{{x}^{\mathrm{2}} +\mathrm{DE}^{\mathrm{2}} −\mathrm{2}{x}.\mathrm{DE}.\mathrm{cos100}°} \\ $$$$\:\:\:\:\:\:\:\:={h}\sqrt{\left(\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right)^{\mathrm{2}} +\left(\frac{\mathrm{sin60}°}{\mathrm{sin80}°}−\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right)\left(\frac{\mathrm{sin60}°}{\mathrm{sin80}°}−\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right)\mathrm{cos100}°} \\ $$$$\:\:\:\:\:\:\:\:\approx{h}\sqrt{\mathrm{0},\mathrm{347296355}^{\mathrm{2}} +\mathrm{0},\mathrm{532088886}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{0},\mathrm{347296355}\right)\left(\mathrm{0},\mathrm{532088886}\right)\mathrm{cos100}°} \\ $$$$\:\:\:\:\:\:\:\:\approx{h}\sqrt{\mathrm{0},\mathrm{467911113}}=\mathrm{0},\mathrm{684040286}{h} \\ $$$$\mathrm{Applying}\:\mathrm{Sine}\:\mathrm{rule}\:\mathrm{we}\:\mathrm{have} \\ $$$$\frac{\mathrm{sin}\vartheta}{{x}}=\frac{\mathrm{sin100}°}{\mathrm{AD}}\:\Rightarrow\vartheta=\mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{AD}}\mathrm{sin100}°\right)=\mathrm{sin}^{−\mathrm{1}} \left(\frac{{h}}{\mathrm{AD}}\centerdot\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\centerdot\mathrm{sin100}°\right) \\ $$$$\vartheta=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\left(\mathrm{2cos40}°−\mathrm{1}\right)\left(\mathrm{sin100}°\right)}{\:\left(\mathrm{0},\mathrm{684040286}\right)\left(\mathrm{2cos40}°\right)}\right)=\mathrm{30}° \\ $$
Answered by mr W last updated on 05/Oct/22
$$\frac{{AD}}{\mathrm{sin}\:\mathrm{100}}=\frac{{AE}}{\mathrm{sin}\:{x}}\:\:\:\:…\left({i}\right) \\ $$$$\frac{\mathrm{sin}\:\mathrm{20}}{{AD}}=\frac{\mathrm{sin}\:\left({x}−\mathrm{20}\right)}{{CD}}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right): \\ $$$$\frac{\mathrm{sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{100}}=\frac{\mathrm{sin}\:\left({x}−\mathrm{20}\right)}{\mathrm{sin}\:{x}} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{10}}=\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{tan}\:{x}} \\ $$$$\mathrm{tan}\:{x}=\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{10}}} \\ $$$$\Rightarrow{x}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{10}}}\right)=\mathrm{30}° \\ $$
Commented by Ar Brandon last updated on 05/Oct/22
Nice Sir !