Menu Close

Question-177456




Question Number 177456 by cortano1 last updated on 05/Oct/22
Answered by a.lgnaoui last updated on 05/Oct/22
posons  x=sin t    alors y=cos t  (1/(sin t))+(4/(cos t))=((cos t+4sin t)/(sin tcos t))  le rapoort  est minimale  si   scos t+4sin t mnimale)   { ((cos t+4sin t=0)),((sin tcos t≠0)) :}  4sin t=−cos t   tan t=−(1/4)=((sin t)/(cos t))  sin^2 t+16sin^2 t=1  sin t=((√(17))/(17))   t=sin^(−1) (((√(17))/(17)))  ⇒ x=((√(17))/(17))  y=(√(1−(1/(17))))   =((4(√(17)))/(17))  (1/x)+(4/y)=  ((√(17))/(17))+(4×((17)/(4(√(17)))))=((18(√(17)))/(17))  (1/x)+(4/y)=4,365
posonsx=sintalorsy=cost1sint+4cost=cost+4sintsintcostlerapoortestminimalesiscost+4sintmnimale){cost+4sint=0sintcost04sint=costtant=14=sintcostsin2t+16sin2t=1sint=1717t=sin1(1717)x=1717y=1117=417171x+4y=1717+(4×17417)=1817171x+4y=4,365
Commented by mr W last updated on 05/Oct/22
it′s wrong sir!  x=cos t >0  y=sin  t >0  cos t+4 sin t>0  !  you can′t get cos t+4 sin t=0 !
itswrongsir!x=cost>0y=sint>0cost+4sint>0!youcantgetcost+4sint=0!
Answered by mr W last updated on 05/Oct/22
x^2 +y^2 =1 and x,y>0  ⇒x=cos θ, y=sin θ with 0<θ<(π/2)  k=(1/x)+(4/y)=(1/(cos θ))+(4/(sin θ))  (dk/dθ)=((sin θ)/(cos^2  θ))−((4cos θ)/(sin^2  θ))=0  ⇒tan^3  θ=4   ⇒tan θ=(4)^(1/3)   sin θ=((4)^(1/3) /( (√(1+2(2)^(1/3) ))))  cos θ=(1/( (√(1+2(2)^(1/3) ))))  k_(min) =(√(1+2(2)^(1/3) ))+((4(√(1+2(2)^(1/3) )))/( (4)^(1/3) ))           =(1+(4/( (4)^(1/3) )))(√(1+2(2)^(1/3) ))           =(1+2(2)^(1/3) )^(3/2) ≈6.604
x2+y2=1andx,y>0x=cosθ,y=sinθwith0<θ<π2k=1x+4y=1cosθ+4sinθdkdθ=sinθcos2θ4cosθsin2θ=0tan3θ=4tanθ=43sinθ=431+223cosθ=11+223kmin=1+223+41+22343=(1+443)1+223=(1+223)326.604
Commented by Strengthenchen last updated on 05/Oct/22
how can get differential is 0?  because it is a trigonometric value?  get  d(c)/dx=0?
howcangetdifferentialis0?becauseitisatrigonometricvalue?getd(c)/dx=0?
Commented by Tawa11 last updated on 05/Oct/22
Great sirs
Greatsirs
Commented by Strengthenchen last updated on 06/Oct/22
thank a lot,   it′s perfect  to  use  character  of  function
thankalot,itsperfecttousecharacteroffunction

Leave a Reply

Your email address will not be published. Required fields are marked *