Menu Close

Question-177597




Question Number 177597 by cortano1 last updated on 07/Oct/22
Answered by mr W last updated on 07/Oct/22
method 1: without using formula  1×1×C_3 ^6 ×2^3   +[1×(−1)+3×1]×C_2 ^6 ×2^4   +3×(−1)×6×2^5   =64
$$\boldsymbol{{method}}\:\mathrm{1}:\:\boldsymbol{{without}}\:\boldsymbol{{using}}\:\boldsymbol{{formula}} \\ $$$$\mathrm{1}×\mathrm{1}×{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{2}^{\mathrm{3}} \\ $$$$+\left[\mathrm{1}×\left(−\mathrm{1}\right)+\mathrm{3}×\mathrm{1}\right]×{C}_{\mathrm{2}} ^{\mathrm{6}} ×\mathrm{2}^{\mathrm{4}} \\ $$$$+\mathrm{3}×\left(−\mathrm{1}\right)×\mathrm{6}×\mathrm{2}^{\mathrm{5}} \\ $$$$=\mathrm{64} \\ $$
Answered by mr W last updated on 07/Oct/22
method 2: using formula  (1+3x)(1−x)(2+x)^6   =(1+2x−3x^2 )Σ_(k=0) ^6 C_k ^6 2^(6−k) x^k   coef. of x^3  term:  1×C_3 ^6 ×2^(6−3) +2×C_2 ^6 ×2^(6−2) −3×C_1 ^6 ×2^(6−1)   =160+480−576  =64
$$\boldsymbol{{method}}\:\mathrm{2}:\:\boldsymbol{{using}}\:\boldsymbol{{formula}} \\ $$$$\left(\mathrm{1}+\mathrm{3}{x}\right)\left(\mathrm{1}−{x}\right)\left(\mathrm{2}+{x}\right)^{\mathrm{6}} \\ $$$$=\left(\mathrm{1}+\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{2}} \right)\underset{{k}=\mathrm{0}} {\overset{\mathrm{6}} {\sum}}{C}_{{k}} ^{\mathrm{6}} \mathrm{2}^{\mathrm{6}−{k}} {x}^{{k}} \\ $$$${coef}.\:{of}\:{x}^{\mathrm{3}} \:{term}: \\ $$$$\mathrm{1}×{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{2}^{\mathrm{6}−\mathrm{3}} +\mathrm{2}×{C}_{\mathrm{2}} ^{\mathrm{6}} ×\mathrm{2}^{\mathrm{6}−\mathrm{2}} −\mathrm{3}×{C}_{\mathrm{1}} ^{\mathrm{6}} ×\mathrm{2}^{\mathrm{6}−\mathrm{1}} \\ $$$$=\mathrm{160}+\mathrm{480}−\mathrm{576} \\ $$$$=\mathrm{64} \\ $$
Commented by Tawa11 last updated on 09/Oct/22
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *