Menu Close

Question-177665




Question Number 177665 by Ahmed777hamouda last updated on 07/Oct/22
Answered by Ar Brandon last updated on 07/Oct/22
∫_(−∞) ^∞ sinx^2 dx=∫_0 ^∞ ((sint)/( (√t)))dt=(π/(2Γ((1/2))sin((π/2)∙(1/2))))=(√(π/2))
$$\int_{−\infty} ^{\infty} \mathrm{sin}{x}^{\mathrm{2}} {dx}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{t}}{\:\sqrt{{t}}}{dt}=\frac{\pi}{\mathrm{2}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\right)}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$
Answered by Mathspace last updated on 07/Oct/22
∫_(−∞) ^(+∞) cos(x^2 )dx−i∫_(−∞) ^(+∞) sin(x^2 )dx  =∫_(−∞) ^(+∞) e^(−ix^2 ) dx  ((√i)x=t)  =∫_(−∞) ^(+∞) e^(−t^2 ) (dt/( (√i)))=(1/( (√i)))∫_(−∞) ^(+∞) e^(−t^2 ) dt  =e^(−((iπ)/4)) (√π)=(√π){cos((π/4))−isin((π/4))}  =(√π){(1/( (√2)))−(1/( (√2)))i}  ⇒∫_(−∞) ^(+∞) cos(x^2 )dx=(√(π/2))  and ∫_(−∞) ^(+∞) sin(x^2 )dx=(√(π/2))  another way with residus   theorem but very long
$$\int_{−\infty} ^{+\infty} {cos}\left({x}^{\mathrm{2}} \right){dx}−{i}\int_{−\infty} ^{+\infty} {sin}\left({x}^{\mathrm{2}} \right){dx} \\ $$$$=\int_{−\infty} ^{+\infty} {e}^{−{ix}^{\mathrm{2}} } {dx}\:\:\left(\sqrt{{i}}{x}={t}\right) \\ $$$$=\int_{−\infty} ^{+\infty} {e}^{−{t}^{\mathrm{2}} } \frac{{dt}}{\:\sqrt{{i}}}=\frac{\mathrm{1}}{\:\sqrt{{i}}}\int_{−\infty} ^{+\infty} {e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$$={e}^{−\frac{{i}\pi}{\mathrm{4}}} \sqrt{\pi}=\sqrt{\pi}\left\{{cos}\left(\frac{\pi}{\mathrm{4}}\right)−{isin}\left(\frac{\pi}{\mathrm{4}}\right)\right\} \\ $$$$=\sqrt{\pi}\left\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{i}\right\} \\ $$$$\Rightarrow\int_{−\infty} ^{+\infty} {cos}\left({x}^{\mathrm{2}} \right){dx}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$${and}\:\int_{−\infty} ^{+\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$${another}\:{way}\:{with}\:{residus}\: \\ $$$${theorem}\:{but}\:{very}\:{long} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *