Menu Close

Question-177832




Question Number 177832 by HeferH last updated on 09/Oct/22
Answered by mr W last updated on 10/Oct/22
Commented by mr W last updated on 10/Oct/22
r_2 =(R/4)  (r_1 +r_2 )^2 −(((3R)/4)−r_1 )^2 =(R−r_1 )^2 −r_1 ^2   ⇒r_1 =((3R)/8)  (−(1/R)+(8/(3R))+(4/R)+(1/r))^2 =2((1/R^2 )+((64)/(9R^2 ))+((16)/R^2 )+(1/r^2 ))  (((17)/(3R))+(1/r))^2 =2(((217)/(9R^2 ))+(1/r^2 ))  (9/r^2 )−((102)/(Rr))+((145)/R^2 )=0  (R/r)=(1/9)(51+(√(51^2 −9×145)))=((87)/9)=((29)/3)  ⇒(r/R)=(3/(29)) ✓
$${r}_{\mathrm{2}} =\frac{{R}}{\mathrm{4}} \\ $$$$\left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\left(\frac{\mathrm{3}{R}}{\mathrm{4}}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} =\left({R}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} −{r}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\Rightarrow{r}_{\mathrm{1}} =\frac{\mathrm{3}{R}}{\mathrm{8}} \\ $$$$\left(−\frac{\mathrm{1}}{{R}}+\frac{\mathrm{8}}{\mathrm{3}{R}}+\frac{\mathrm{4}}{{R}}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{1}}{{R}^{\mathrm{2}} }+\frac{\mathrm{64}}{\mathrm{9}{R}^{\mathrm{2}} }+\frac{\mathrm{16}}{{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\right) \\ $$$$\left(\frac{\mathrm{17}}{\mathrm{3}{R}}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{217}}{\mathrm{9}{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\right) \\ $$$$\frac{\mathrm{9}}{{r}^{\mathrm{2}} }−\frac{\mathrm{102}}{{Rr}}+\frac{\mathrm{145}}{{R}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{1}}{\mathrm{9}}\left(\mathrm{51}+\sqrt{\mathrm{51}^{\mathrm{2}} −\mathrm{9}×\mathrm{145}}\right)=\frac{\mathrm{87}}{\mathrm{9}}=\frac{\mathrm{29}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{3}}{\mathrm{29}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 10/Oct/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *