Menu Close

Question-177848




Question Number 177848 by mathdave last updated on 09/Oct/22
Commented by mathdave last updated on 09/Oct/22
mr w help me out oo or others
$${mr}\:{w}\:{help}\:{me}\:{out}\:{oo}\:{or}\:{others} \\ $$
Commented by mr W last updated on 10/Oct/22
i hope someone else could help you.
$${i}\:{hope}\:{someone}\:{else}\:{could}\:{help}\:{you}. \\ $$
Commented by York12 last updated on 22/May/23
you are uploading your assigments on the  forum   and harrying us up to solve them   you are stupid or simply lazy
$${you}\:{are}\:{uploading}\:{your}\:{assigments}\:{on}\:{the} \\ $$$${forum}\: \\ $$$${and}\:{harrying}\:{us}\:{up}\:{to}\:{solve}\:{them}\: \\ $$$${you}\:{are}\:{stupid}\:{or}\:{simply}\:{lazy} \\ $$
Answered by Spillover last updated on 10/Oct/22
sin (((A+∂m)/2))=cot (A/2)sin (A/2)  sin (((A+∂m)/2))=((cos (A/2))/(sin (A/2)))sin (A/2)  sin (((A+∂m)/2))=cos  (A/2)=sin ((π/2)−(A/2))  ((A+∂m)/2)=(π/2)−(A/2)  ∂m=π−2A
$$\mathrm{sin}\:\left(\frac{\mathrm{A}+\partial\mathrm{m}}{\mathrm{2}}\right)=\mathrm{cot}\:\frac{\mathrm{A}}{\mathrm{2}}\mathrm{sin}\:\frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\left(\frac{\mathrm{A}+\partial\mathrm{m}}{\mathrm{2}}\right)=\frac{\mathrm{cos}\:\frac{\mathrm{A}}{\mathrm{2}}}{\mathrm{sin}\:\frac{\mathrm{A}}{\mathrm{2}}}\mathrm{sin}\:\frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\left(\frac{\mathrm{A}+\partial\mathrm{m}}{\mathrm{2}}\right)=\mathrm{cos}\:\:\frac{\mathrm{A}}{\mathrm{2}}=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{A}}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{A}+\partial\mathrm{m}}{\mathrm{2}}=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\partial\mathrm{m}=\pi−\mathrm{2A} \\ $$$$ \\ $$
Commented by mathdave last updated on 10/Oct/22
thanks sir i really appreciate
$${thanks}\:{sir}\:{i}\:{really}\:{appreciate} \\ $$
Answered by Spillover last updated on 10/Oct/22
((1.55)/(1.30))=((sin (((A+D)/2)))/(sin (A/2)))=((sin (((65+D)/2)))/(sin ((65)/2)))  ((1.55)/(1.30))=((sin (((65+D)/2)))/(sin ((65)/2)))  Find D    ↑↑
$$\frac{\mathrm{1}.\mathrm{55}}{\mathrm{1}.\mathrm{30}}=\frac{\mathrm{sin}\:\left(\frac{\mathrm{A}+\mathrm{D}}{\mathrm{2}}\right)}{\mathrm{sin}\:\frac{\mathrm{A}}{\mathrm{2}}}=\frac{\mathrm{sin}\:\left(\frac{\mathrm{65}+\mathrm{D}}{\mathrm{2}}\right)}{\mathrm{sin}\:\frac{\mathrm{65}}{\mathrm{2}}} \\ $$$$\frac{\mathrm{1}.\mathrm{55}}{\mathrm{1}.\mathrm{30}}=\frac{\mathrm{sin}\:\left(\frac{\mathrm{65}+\mathrm{D}}{\mathrm{2}}\right)}{\mathrm{sin}\:\frac{\mathrm{65}}{\mathrm{2}}} \\ $$$$\mathrm{Find}\:\mathrm{D}\:\:\:\:\uparrow\uparrow \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *