Menu Close

Question-177880




Question Number 177880 by DAVONG last updated on 10/Oct/22
Answered by mr W last updated on 10/Oct/22
(1+x)^n =Σ_(k=0) ^n C_k ^n x^k   n(1+x)^(n−1) =Σ_(k=1) ^n kC_k ^n x^(k−1)   with x=1:  n(1+1)^(n−1) =Σ_(k=1) ^n kC_k ^n =11264=11×2^(10)   n2^(n−1) =11×2^(11−1)   ⇒n=11
$$\left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} {x}^{{k}} \\ $$$${n}\left(\mathrm{1}+{x}\right)^{{n}−\mathrm{1}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{kC}_{{k}} ^{{n}} {x}^{{k}−\mathrm{1}} \\ $$$${with}\:{x}=\mathrm{1}: \\ $$$${n}\left(\mathrm{1}+\mathrm{1}\right)^{{n}−\mathrm{1}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{kC}_{{k}} ^{{n}} =\mathrm{11264}=\mathrm{11}×\mathrm{2}^{\mathrm{10}} \\ $$$${n}\mathrm{2}^{{n}−\mathrm{1}} =\mathrm{11}×\mathrm{2}^{\mathrm{11}−\mathrm{1}} \\ $$$$\Rightarrow{n}=\mathrm{11} \\ $$
Commented by DAVONG last updated on 10/Oct/22
Thanks teacher
$$\mathrm{Thanks}\:\mathrm{teacher} \\ $$
Commented by Tawa11 last updated on 10/Oct/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *