Menu Close

Question-178178




Question Number 178178 by cortano1 last updated on 13/Oct/22
Answered by Frix last updated on 14/Oct/22
lim_(x→0)  ((x−sin^(−1)  x)/(x^2 sin^(−1)  x)) =_([t=sin^(−1)  x])   =−lim_(t→0)  ((t−sin t)/(tsin^2  t)) =_([3 times l′Ho^� pital])   =−lim_(t→0)  (((d^3 [t−sin t])/dt^3 )/((d^3 [tsin^2  t])/dt^3 )) =  =−lim_(t→0)  ((cos t)/(12cos^2  t −8tcos t sin t −6)) =  =−(1/6)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\mathrm{sin}^{−\mathrm{1}} \:{x}}{{x}^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \:{x}}\:=_{\left[{t}=\mathrm{sin}^{−\mathrm{1}} \:{x}\right]} \\ $$$$=−\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{t}−\mathrm{sin}\:{t}}{{t}\mathrm{sin}^{\mathrm{2}} \:{t}}\:=_{\left[\mathrm{3}\:\mathrm{times}\:\mathrm{l}'\mathrm{H}\hat {\mathrm{o}pital}\right]} \\ $$$$=−\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{d}^{\mathrm{3}} \left[{t}−\mathrm{sin}\:{t}\right]}{{dt}^{\mathrm{3}} }}{\frac{{d}^{\mathrm{3}} \left[{t}\mathrm{sin}^{\mathrm{2}} \:{t}\right]}{{dt}^{\mathrm{3}} }}\:= \\ $$$$=−\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{t}}{\mathrm{12cos}^{\mathrm{2}} \:{t}\:−\mathrm{8}{t}\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\:−\mathrm{6}}\:= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *