Question Number 178246 by mnjuly1970 last updated on 14/Oct/22
Answered by CElcedricjunior last updated on 14/Oct/22
$$\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)}{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\pi}}{\mathrm{64}}\left(\boldsymbol{{a}\zeta}\left(\mathrm{2}\right)+{b}\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\mathrm{2}\right)\right) \\ $$$$\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)}{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{l}}\overset{\mathrm{2}} {\boldsymbol{\mathrm{n}}}\left(\boldsymbol{\mathrm{x}}\right)}{\mathrm{2}\left[\left(\boldsymbol{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}\right]}\boldsymbol{\mathrm{dx}} \\ $$$$\boldsymbol{\Omega}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{l}}\overset{\mathrm{2}} {\boldsymbol{\mathrm{n}}}\left(\boldsymbol{\mathrm{x}}\right)}{\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\boldsymbol{\mathrm{dx}} \\ $$$$\boldsymbol{\mathrm{posons}}\:\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{1}=\boldsymbol{\mathrm{tana}}=>\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{\mathrm{tana}}β\mathrm{1}\right) \\ $$$$=>\boldsymbol{\mathrm{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\boldsymbol{\mathrm{tan}}^{\mathrm{2}} \boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{da}}\:\:\:\:\:\boldsymbol{\mathrm{qd}}: \\ $$$$\begin{cases}{\boldsymbol{\mathrm{x}}β>\mathrm{0}}\\{\boldsymbol{\mathrm{x}}β>\infty}\end{cases}=>\begin{cases}{\boldsymbol{{a}}β>\frac{\boldsymbol{\pi}}{\mathrm{4}}}\\{\boldsymbol{{a}}β>\frac{\boldsymbol{\pi}}{\mathrm{2}}}\end{cases} \\ $$$$=>\boldsymbol{\Omega}=\mathrm{2}\int_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} \boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{\mathrm{tana}}β\mathrm{1}\right)\right)\boldsymbol{\mathrm{dx}} \\ $$$$=>\boldsymbol{\Omega}=\mathrm{2}\int_{\boldsymbol{\pi}/\mathrm{4}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\boldsymbol{\mathrm{da}}+\mathrm{2}\int_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} \mathrm{ln}^{\mathrm{2}} \left(\boldsymbol{\mathrm{tana}}β\mathrm{1}\right)\boldsymbol{\mathrm{da}} \\ $$$$=>\boldsymbol{\Omega}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\mathrm{l}\overset{\mathrm{2}} {\mathrm{n}}\left(\mathrm{2}\right)+\mathrm{2}\int_{\boldsymbol{\pi}/\mathrm{4}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{\mathrm{l}}\overset{\mathrm{2}} {\boldsymbol{\mathrm{n}}}\left(\boldsymbol{\mathrm{tana}}β\mathrm{1}\right)\boldsymbol{\mathrm{da}} \\ $$$$\boldsymbol{\mathrm{on}}\:\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{I}}=\mathrm{2}\int_{\boldsymbol{\pi}/\mathrm{4}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{tana}}β\mathrm{1}\right)\boldsymbol{\mathrm{da}} \\ $$$${posons}\:\boldsymbol{{tana}}=\boldsymbol{{x}}=>\boldsymbol{{da}}=\frac{\boldsymbol{{dx}}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} } \\ $$$$=>\boldsymbol{\mathrm{I}}=\mathrm{2}\int_{\mathrm{1}} ^{\infty} \frac{\boldsymbol{\mathrm{l}}\overset{\mathrm{2}} {\boldsymbol{\mathrm{n}}}\left(\boldsymbol{\mathrm{x}}β\mathrm{1}\right)}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=\mathrm{2}\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }.\boldsymbol{\zeta}\left(\mathrm{2}\right)\boldsymbol{\mathrm{dx}} \\ $$$$\boldsymbol{\mathrm{I}}=\mathrm{2}\boldsymbol{\zeta}\left(\mathrm{2}\right)\int_{\mathrm{1}} ^{\infty} \frac{\boldsymbol{\mathrm{dx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }=\mathrm{2}\boldsymbol{\zeta}\left(\mathrm{2}\right)\left[\boldsymbol{{a}}\right]_{\boldsymbol{\pi}/\mathrm{4}} ^{\boldsymbol{\pi}/\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{I}}=\frac{\boldsymbol{\pi\zeta}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$=>\boldsymbol{\Omega}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\left(\boldsymbol{\zeta}\left(\mathrm{2}\right)+\boldsymbol{\mathrm{l}}\overset{\mathrm{2}} {\boldsymbol{\mathrm{n}}}\left(\mathrm{2}\right)\right) \\ $$$$=>\boldsymbol{\Omega}=\frac{\boldsymbol{\pi}}{\mathrm{64}}\left(\mathrm{32}\boldsymbol{\mathrm{l}}\overset{\mathrm{2}} {\boldsymbol{\mathrm{n}}}\left(\mathrm{2}\right)+\mathrm{32}\boldsymbol{\zeta}\left(\mathrm{2}\right)\right) \\ $$$$ \\ $$$$……………{le}\:{celebre}\:{cedric}\:{junior}……… \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 14/Oct/22
$${thanks}\:{alot} \\ $$
Commented by Tawa11 last updated on 14/Oct/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$