Menu Close

Question-178647




Question Number 178647 by infinityaction last updated on 19/Oct/22
Answered by mr W last updated on 19/Oct/22
side length =x  (x/5)=((5+1)/(x+(√(5^2 −x^2 ))))  x(√(25−x^2 ))=30−x^2   x^2 (25−x^2 )=900−60x^2 +x^4   2x^4 −85x^2 +900=0  x^2 =((85±5)/4)=22.5 or 20  the maximum area is (x^2 )_(max)  which  is 22.5.
$${side}\:{length}\:={x} \\ $$$$\frac{{x}}{\mathrm{5}}=\frac{\mathrm{5}+\mathrm{1}}{{x}+\sqrt{\mathrm{5}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \\ $$$${x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }=\mathrm{30}−{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \left(\mathrm{25}−{x}^{\mathrm{2}} \right)=\mathrm{900}−\mathrm{60}{x}^{\mathrm{2}} +{x}^{\mathrm{4}} \\ $$$$\mathrm{2}{x}^{\mathrm{4}} −\mathrm{85}{x}^{\mathrm{2}} +\mathrm{900}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{85}\pm\mathrm{5}}{\mathrm{4}}=\mathrm{22}.\mathrm{5}\:{or}\:\mathrm{20} \\ $$$${the}\:{maximum}\:{area}\:{is}\:\left({x}^{\mathrm{2}} \right)_{{max}} \:{which} \\ $$$${is}\:\mathrm{22}.\mathrm{5}. \\ $$
Commented by infinityaction last updated on 20/Oct/22
thanks sir
$${thanks}\:{sir} \\ $$
Commented by Tawa11 last updated on 20/Oct/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *