Menu Close

Question-178839




Question Number 178839 by ARUNG_Brandon_MBU last updated on 22/Oct/22
Answered by HeferH last updated on 22/Oct/22
 Side of the square = (√8) = 2(√2)   l_1 = 2(√2) −( (((√6) + (√2))/2))= ((3(√2) −(√6))/2)   l_2 = 2(√2) + ((((√6) − (√2))/2))= ((3(√2) + (√6) )/2)   l_1 ^( 2)  + l_2 ^2  = EB^2    EB=(√(12)) = 2(√3)
Sideofthesquare=8=22l1=22(6+22)=3262l2=22+(622)=32+62l12+l22=EB2EB=12=23
Commented by HeferH last updated on 22/Oct/22
Commented by ARUNG_Brandon_MBU last updated on 22/Oct/22
Thank you Sir
Commented by ARUNG_Brandon_MBU last updated on 22/Oct/22
Any explanations, please?
Commented by HeferH last updated on 22/Oct/22
Commented by ARUNG_Brandon_MBU last updated on 22/Oct/22
OK thanks. I get it now.
Commented by Rasheed.Sindhi last updated on 22/Oct/22
I didn′t get it sir,please explain in   some detail.
Ididntgetitsir,pleaseexplaininsomedetail.
Commented by HeferH last updated on 22/Oct/22
FE: l_2    FB: l_1
FE:l2FB:l1
Commented by Rasheed.Sindhi last updated on 23/Oct/22
Please execuse me for lack of fundamentals.  Actually I can′t understand where the  the values (√6) −(√2) &(√6) +(√2) have   come from? And why your & my  answers are different?
Pleaseexecusemeforlackoffundamentals.ActuallyIcantunderstandwherethethevalues62&6+2havecomefrom?Andwhyyour&myanswersaredifferent?
Commented by Ar Brandon last updated on 23/Oct/22
They are the values of sin15° and cos15°, Sir.  sin15°=(((√6)−(√2))/4) , cos15°=(((√6)+(√2))/4)
Theyarethevaluesofsin15°andcos15°,Sir.sin15°=624,cos15°=6+24
Commented by Rasheed.Sindhi last updated on 24/Oct/22
Ok, thanx Brandon sir!
Ok,thanxBrandonsir!
Answered by Rasheed.Sindhi last updated on 22/Oct/22
■=s^2 =8;BD=(√(s^2 +s^2 ))=(√(8^2 +8^2 ))=8(√2)  ∠BDE=45+15=60  △BDE:  EB=(√(BD^2 +DE^2 −2BD∙DE∙cos∠BDE ))        =(√((8(√2) )^2 +2^2 −2(8(√2) )(2)cos 60 ))        =(√(128+4−2(8(√2) )(2)(1/2)))        =(√(132−16(√2) ))        =2(√(33−4(√2)))
◼=s2=8;BD=s2+s2=82+82=82BDE=45+15=60BDE:EB=BD2+DE22BDDEcosBDE=(82)2+222(82)(2)cos60=128+42(82)(2)(1/2)=132162=23342
Commented by ARUNG_Brandon_MBU last updated on 22/Oct/22
Thank you Sir

Leave a Reply

Your email address will not be published. Required fields are marked *