Menu Close

Question-178870




Question Number 178870 by ARUNG_Brandon_MBU last updated on 22/Oct/22
Answered by Rasheed.Sindhi last updated on 22/Oct/22
Rule:   determinant (( determinant ((a)),(     ), determinant ((b))),((   ), determinant ((((ad+bc)/2))),(  )),( determinant ((c)),(   ), determinant ((d))))     Applying rule:   determinant (( determinant (((x+2))),(     ), determinant (((x+1)))),((   ), determinant ((((((x+2)(3)+(x)(x+1))/2)=1))),(  )),( determinant (((    x   ))),(   ), determinant (((    3  )))))     (((x+2)(3)+(x)(x+1))/2)=1     3x+6+x^2 +x=2     x^2 +4x+4=0      (x+2)^2 =0       x=−2
$$\mathrm{Rule}: \\ $$$$\begin{array}{|c|c|c|}{\begin{array}{|c|}{{a}}\\\hline\end{array}}&\hline{\:\:\:\:\:}&\hline{\begin{array}{|c|}{{b}}\\\hline\end{array}}\\{\:\:\:}&\hline{\begin{array}{|c|}{\frac{{ad}+{bc}}{\mathrm{2}}}\\\hline\end{array}}&\hline{\:\:}\\{\begin{array}{|c|}{{c}}\\\hline\end{array}}&\hline{\:\:\:}&\hline{\begin{array}{|c|}{{d}}\\\hline\end{array}}\\\hline\end{array}\:\:\: \\ $$$$\mathrm{Applying}\:\mathrm{rule}: \\ $$$$\begin{array}{|c|c|c|}{\begin{array}{|c|}{{x}+\mathrm{2}}\\\hline\end{array}}&\hline{\:\:\:\:\:}&\hline{\begin{array}{|c|}{{x}+\mathrm{1}}\\\hline\end{array}}\\{\:\:\:}&\hline{\begin{array}{|c|}{\frac{\left({x}+\mathrm{2}\right)\left(\mathrm{3}\right)+\left({x}\right)\left({x}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{1}}\\\hline\end{array}}&\hline{\:\:}\\{\begin{array}{|c|}{\:\:\:\:{x}\:\:\:}\\\hline\end{array}}&\hline{\:\:\:}&\hline{\begin{array}{|c|}{\:\:\:\:\mathrm{3}\:\:}\\\hline\end{array}}\\\hline\end{array} \\ $$$$\:\:\:\frac{\left({x}+\mathrm{2}\right)\left(\mathrm{3}\right)+\left({x}\right)\left({x}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{1} \\ $$$$\:\:\:\mathrm{3}{x}+\mathrm{6}+{x}^{\mathrm{2}} +{x}=\mathrm{2} \\ $$$$\:\:\:{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}=\mathrm{0} \\ $$$$\:\:\:\:\left({x}+\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:{x}=−\mathrm{2} \\ $$$$\:\:\: \\ $$
Commented by ARUNG_Brandon_MBU last updated on 22/Oct/22
Great! Thanks Sir

Leave a Reply

Your email address will not be published. Required fields are marked *