Menu Close

Question-178947




Question Number 178947 by HeferH last updated on 23/Oct/22
Answered by mr W last updated on 23/Oct/22
Commented by mr W last updated on 23/Oct/22
((sin β)/(4k))=((sin ((π/4)+β))/(GB))  ((sin α)/(3k))=((sin ((π/4)+α))/(GB))  ((3 sin β)/(4 sin α))=((sin ((π/4)+β))/(sin ((π/4)+α)))=((cos β+sin β)/(cos α+sin α))  α+β=(π/2)  ((3 cos α)/(4 sin α))=1  ⇒tan α=(3/4)  ((4k)/(sin β))=((GB)/(sin ((π/4)+β)))  ⇒GB=((4k (cos β+sin β))/( (√2) sin β))=((7(√2)k)/( 2))  GH=GB−HB=((7(√2)k)/2)−((4(√2)k)/2)=((3(√2)k)/2)  HE=GH tan α=((3(√2)k)/2)×(3/4)=((9(√2)k)/8)  magenta area=((GB×HE)/2)      =(1/2)×((7(√2)k)/( 2))×((9(√2)k)/8)=((63k^2 )/(16))  area of square =(4k)^2 =16k^2   yellow area=16k^2 −((63k^2 )/(16))=((193k^2 )/(16))  ((magenta)/(yellow))=((63)/(196)) ✓
sinβ4k=sin(π4+β)GBsinα3k=sin(π4+α)GB3sinβ4sinα=sin(π4+β)sin(π4+α)=cosβ+sinβcosα+sinαα+β=π23cosα4sinα=1tanα=344ksinβ=GBsin(π4+β)GB=4k(cosβ+sinβ)2sinβ=72k2GH=GBHB=72k242k2=32k2HE=GHtanα=32k2×34=92k8magentaarea=GB×HE2=12×72k2×92k8=63k216areaofsquare=(4k)2=16k2yellowarea=16k263k216=193k216magentayellow=63196
Commented by Tawa11 last updated on 23/Oct/22
Great sir.
Greatsir.

Leave a Reply

Your email address will not be published. Required fields are marked *