Question Number 178947 by HeferH last updated on 23/Oct/22
Answered by mr W last updated on 23/Oct/22
Commented by mr W last updated on 23/Oct/22
$$\frac{\mathrm{sin}\:\beta}{\mathrm{4}{k}}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\beta\right)}{{GB}} \\ $$$$\frac{\mathrm{sin}\:\alpha}{\mathrm{3}{k}}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\alpha\right)}{{GB}} \\ $$$$\frac{\mathrm{3}\:\mathrm{sin}\:\beta}{\mathrm{4}\:\mathrm{sin}\:\alpha}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\beta\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\alpha\right)}=\frac{\mathrm{cos}\:\beta+\mathrm{sin}\:\beta}{\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha} \\ $$$$\alpha+\beta=\frac{\pi}{\mathrm{2}} \\ $$$$\frac{\mathrm{3}\:\mathrm{cos}\:\alpha}{\mathrm{4}\:\mathrm{sin}\:\alpha}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{\mathrm{4}{k}}{\mathrm{sin}\:\beta}=\frac{{GB}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\beta\right)} \\ $$$$\Rightarrow{GB}=\frac{\mathrm{4}{k}\:\left(\mathrm{cos}\:\beta+\mathrm{sin}\:\beta\right)}{\:\sqrt{\mathrm{2}}\:\mathrm{sin}\:\beta}=\frac{\mathrm{7}\sqrt{\mathrm{2}}{k}}{\:\mathrm{2}} \\ $$$${GH}={GB}−{HB}=\frac{\mathrm{7}\sqrt{\mathrm{2}}{k}}{\mathrm{2}}−\frac{\mathrm{4}\sqrt{\mathrm{2}}{k}}{\mathrm{2}}=\frac{\mathrm{3}\sqrt{\mathrm{2}}{k}}{\mathrm{2}} \\ $$$${HE}={GH}\:\mathrm{tan}\:\alpha=\frac{\mathrm{3}\sqrt{\mathrm{2}}{k}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{4}}=\frac{\mathrm{9}\sqrt{\mathrm{2}}{k}}{\mathrm{8}} \\ $$$${magenta}\:{area}=\frac{{GB}×{HE}}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{7}\sqrt{\mathrm{2}}{k}}{\:\mathrm{2}}×\frac{\mathrm{9}\sqrt{\mathrm{2}}{k}}{\mathrm{8}}=\frac{\mathrm{63}{k}^{\mathrm{2}} }{\mathrm{16}} \\ $$$${area}\:{of}\:{square}\:=\left(\mathrm{4}{k}\right)^{\mathrm{2}} =\mathrm{16}{k}^{\mathrm{2}} \\ $$$${yellow}\:{area}=\mathrm{16}{k}^{\mathrm{2}} −\frac{\mathrm{63}{k}^{\mathrm{2}} }{\mathrm{16}}=\frac{\mathrm{193}{k}^{\mathrm{2}} }{\mathrm{16}} \\ $$$$\frac{{magenta}}{{yellow}}=\frac{\mathrm{63}}{\mathrm{196}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 23/Oct/22
$$\mathrm{Great}\:\mathrm{sir}. \\ $$