Menu Close

Question-179281




Question Number 179281 by cherokeesay last updated on 27/Oct/22
Commented by a.lgnaoui last updated on 28/Oct/22
$$ \\ $$
Answered by ARUNG_Brandon_MBU last updated on 28/Oct/22
For X: X_6 =(4a)r^5 =256  For Y: Y_5 =(3a)r^4 =48  (X_6 /Y_5 ) ⇒(4/3)r=((16)/3) ⇒r=4   ⇒4a=((256)/r^5 )=(1/4) ⇒a=(1/(16))  (i) X_1 =(1/4)  (ii) Σ_(i=1) ^4 X_i =(1/4)∙((4^4 −1)/(4−1))=((2^8 −1)/(12))=((255)/(12))
$$\mathrm{For}\:\mathrm{X}:\:{X}_{\mathrm{6}} =\left(\mathrm{4}{a}\right){r}^{\mathrm{5}} =\mathrm{256} \\ $$$$\mathrm{For}\:\mathrm{Y}:\:{Y}_{\mathrm{5}} =\left(\mathrm{3}{a}\right){r}^{\mathrm{4}} =\mathrm{48} \\ $$$$\frac{\mathrm{X}_{\mathrm{6}} }{\mathrm{Y}_{\mathrm{5}} }\:\Rightarrow\frac{\mathrm{4}}{\mathrm{3}}{r}=\frac{\mathrm{16}}{\mathrm{3}}\:\Rightarrow{r}=\mathrm{4}\: \\ $$$$\Rightarrow\mathrm{4}{a}=\frac{\mathrm{256}}{{r}^{\mathrm{5}} }=\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\left({i}\right)\:\mathrm{X}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left({ii}\right)\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}{X}_{{i}} =\frac{\mathrm{1}}{\mathrm{4}}\centerdot\frac{\mathrm{4}^{\mathrm{4}} −\mathrm{1}}{\mathrm{4}−\mathrm{1}}=\frac{\mathrm{2}^{\mathrm{8}} −\mathrm{1}}{\mathrm{12}}=\frac{\mathrm{255}}{\mathrm{12}} \\ $$
Commented by cherokeesay last updated on 28/Oct/22
thank you sir.
$${thank}\:{you}\:{sir}. \\ $$
Commented by Rasheed.Sindhi last updated on 28/Oct/22
You′ve assumed same ratio for  both GP′s.
$${You}'{ve}\:\boldsymbol{{assumed}}\:{same}\:{ratio}\:{for} \\ $$$${both}\:\mathrm{GP}'\mathrm{s}. \\ $$
Commented by ARUNG_Brandon_MBU last updated on 29/Oct/22
Yes Sir. And I did that without knowing.
Answered by a.lgnaoui last updated on 28/Oct/22

Leave a Reply

Your email address will not be published. Required fields are marked *