Question Number 179281 by cherokeesay last updated on 27/Oct/22
Commented by a.lgnaoui last updated on 28/Oct/22
$$ \\ $$
Answered by ARUNG_Brandon_MBU last updated on 28/Oct/22
$$\mathrm{For}\:\mathrm{X}:\:{X}_{\mathrm{6}} =\left(\mathrm{4}{a}\right){r}^{\mathrm{5}} =\mathrm{256} \\ $$$$\mathrm{For}\:\mathrm{Y}:\:{Y}_{\mathrm{5}} =\left(\mathrm{3}{a}\right){r}^{\mathrm{4}} =\mathrm{48} \\ $$$$\frac{\mathrm{X}_{\mathrm{6}} }{\mathrm{Y}_{\mathrm{5}} }\:\Rightarrow\frac{\mathrm{4}}{\mathrm{3}}{r}=\frac{\mathrm{16}}{\mathrm{3}}\:\Rightarrow{r}=\mathrm{4}\: \\ $$$$\Rightarrow\mathrm{4}{a}=\frac{\mathrm{256}}{{r}^{\mathrm{5}} }=\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\left({i}\right)\:\mathrm{X}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left({ii}\right)\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}{X}_{{i}} =\frac{\mathrm{1}}{\mathrm{4}}\centerdot\frac{\mathrm{4}^{\mathrm{4}} −\mathrm{1}}{\mathrm{4}−\mathrm{1}}=\frac{\mathrm{2}^{\mathrm{8}} −\mathrm{1}}{\mathrm{12}}=\frac{\mathrm{255}}{\mathrm{12}} \\ $$
Commented by cherokeesay last updated on 28/Oct/22
$${thank}\:{you}\:{sir}. \\ $$
Commented by Rasheed.Sindhi last updated on 28/Oct/22
$${You}'{ve}\:\boldsymbol{{assumed}}\:{same}\:{ratio}\:{for} \\ $$$${both}\:\mathrm{GP}'\mathrm{s}. \\ $$
Commented by ARUNG_Brandon_MBU last updated on 29/Oct/22
Yes Sir. And I did that without knowing.
Answered by a.lgnaoui last updated on 28/Oct/22