Menu Close

Question-17963




Question Number 17963 by ajfour last updated on 13/Jul/17
Commented by ajfour last updated on 13/Jul/17
AB=2a  ,  CD=2b  Find r in terms of   a,b,φ, and R.  Hence find AP^2 +BP^2 +CP^2 +DP^2 .
AB=2a,CD=2bFindrintermsofa,b,ϕ,andR.HencefindAP2+BP2+CP2+DP2.
Commented by ajfour last updated on 13/Jul/17
Commented by ajfour last updated on 13/Jul/17
x=(√(R^2 −a^2 ))   ,    y=(√(R^2 −b^2 ))   sin 𝛗_1 =(x/r)    ,     sin 𝛗_2 =(y/r)        𝛗_1 +𝛗_2  = 𝛗   , so  sin^(−1) (((√(R^2 −a^2 ))/r) )+sin^(−1) (((√(R^2 −b^2 ))/r))=𝛗  ...(i)    cannot r be obtained explicitly ?  AP=a−PM    ,  BP=a+PM  CP=b−NP     ,  DP=b+NP  AP^2 +BP^2 +CP^2 +DP^2 =         2a^2 +2PM^2 +2b^2 +2NP^2    ...(ii)  Now, PM^2 +NP^2 =r^2 −x^2 +r^2 −y^2    and with  x^2 =R^2 −a^2  ,  y^2 =R^2 −b^2   we have   PM^2 +NP^2 =2r^2 −(x^2 +y^2 )                         =2r^2 −(2R^2 −a^2 −b^2 )                         =2r^2 +a^2 +b^2 −2R^2   substituting in (ii), we get  AP^2 +BP^2 +CP^2 +DP^2       =(2a)^2 +(2b)^2 −4(R^2 −r^2 ) ;      r is obtained from (i) .
x=R2a2,y=R2b2sinϕ1=xr,sinϕ2=yrϕ1+ϕ2=ϕ,sosin1(R2a2r)+sin1(R2b2r)=ϕ(i)cannotrbeobtainedexplicitly?AP=aPM,BP=a+PMCP=bNP,DP=b+NPAP2+BP2+CP2+DP2=2a2+2PM2+2b2+2NP2(ii)Now,PM2+NP2=r2x2+r2y2andwithx2=R2a2,y2=R2b2wehavePM2+NP2=2r2(x2+y2)=2r2(2R2a2b2)=2r2+a2+b22R2substitutingin(ii),wegetAP2+BP2+CP2+DP2=(2a)2+(2b)24(R2r2);risobtainedfrom(i).
Commented by b.e.h.i.8.3.417@gmail.com last updated on 14/Jul/17
nice and beautiful mr Ajfour.
niceandbeautifulmrAjfour.

Leave a Reply

Your email address will not be published. Required fields are marked *