Question Number 179719 by cortano1 last updated on 01/Nov/22
Commented by Rasheed.Sindhi last updated on 01/Nov/22
$${Is}\:{it}\:\:\sqrt[{\mathrm{5}}]{{x}^{\mathrm{3}} +\mathrm{2}{x}}\:=\sqrt[{\mathrm{3}}]{{x}^{\mathrm{5}} −\mathrm{4}{x}}\:? \\ $$
Commented by mr W last updated on 01/Nov/22
$${x}=\mathrm{0},\:{x}^{\mathrm{2}} =\mathrm{2}\:\Rightarrow{x}=\pm\sqrt{\mathrm{2}} \\ $$
Commented by cortano1 last updated on 01/Nov/22
$$\mathrm{yes}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{0},\:\pm\sqrt{\mathrm{2}} \\ $$
Answered by Rasheed.Sindhi last updated on 01/Nov/22
$$\sqrt[{\mathrm{5}}]{{x}^{\mathrm{3}} +\mathrm{2}{x}}\:=\sqrt[{\mathrm{3}}]{{x}^{\mathrm{5}} −\mathrm{2}{x}}\: \\ $$$$\left(\sqrt[{\mathrm{5}}]{{x}^{\mathrm{3}} +\mathrm{2}{x}}\:\right)^{\mathrm{15}} =\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{5}} −\mathrm{2}{x}}\:\right)^{\mathrm{15}} \\ $$$$\left({x}^{\mathrm{3}} +\mathrm{2}{x}\:\right)^{\mathrm{3}} =\left({x}^{\mathrm{5}} −\mathrm{2}{x}\:\right)^{\mathrm{5}} \\ $$$${x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} ={x}^{\mathrm{5}} \left({x}^{\mathrm{4}} −\mathrm{2}\right)^{\mathrm{5}} \\ $$$${x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} −{x}^{\mathrm{5}} \left({x}^{\mathrm{4}} −\mathrm{2}\right)^{\mathrm{5}} =\mathrm{0} \\ $$$${x}^{\mathrm{3}} \left\{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} −{x}^{\mathrm{2}} \left({x}^{\mathrm{4}} −\mathrm{2}\right)^{\mathrm{5}} \right\}=\mathrm{0} \\ $$$${x}=\mathrm{0}\:\mid\:\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} −{x}^{\mathrm{2}} \left({x}^{\mathrm{4}} −\mathrm{2}\right)^{\mathrm{5}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \left({x}+\frac{\mathrm{2}}{{x}}\right)^{\mathrm{3}} −{x}^{\mathrm{2}} \centerdot{x}^{\mathrm{10}} \left({x}^{\mathrm{2}} −\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right)^{\mathrm{5}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \left({x}+\frac{\mathrm{2}}{{x}}\right)^{\mathrm{3}} −{x}^{\mathrm{12}} \left({x}^{\mathrm{2}} −\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right)^{\mathrm{5}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left({x}+\frac{\mathrm{2}}{{x}}\right)^{\mathrm{3}} −{x}^{\mathrm{9}} \left({x}^{\mathrm{2}} −\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right)^{\mathrm{5}} =\mathrm{0}\:\left[{x}\neq\mathrm{0}\right] \\ $$$$ \\ $$$${Continue}… \\ $$