Menu Close

Question-179752




Question Number 179752 by Acem last updated on 01/Nov/22
Commented by Acem last updated on 01/Nov/22
P.s. Itβ€²s not right triangle
$${P}.{s}.\:{It}'{s}\:{not}\:{right}\:{triangle} \\ $$
Commented by CElcedricjunior last updated on 02/Nov/22
calculons A  dβ€²apres le theoreme des sinus  ((18)/(sin𝛔))=((30)/(sin𝛃))=(k/(sin𝛉))=((540k)/(2A))=2r  =>((18)/(sin(𝛃/2)))=((30)/(2sin(𝛃/2)cos(𝛃/2)))=(k/(sin𝛉))  =>2cos(𝛃/2)=((10)/6)=(5/3)  =>𝛃=2arcos((5/6))  =>𝛃=67.11=>𝛂=((67.11)/2)=33.55  =>((30)/(sin(2arccos((5/6)))))=(k/(sin(180βˆ’3arcos((5/6)))))  k=((30sin(180βˆ’3arccos((5/6))))/(sin(2arccos((5/6)))))  ⇔((18)/(sin(arccos((5/6)))))=((270Γ—30sin(180βˆ’3arccos((5/6))))/(Asin(2arccos((5/6)))))  ⇔A=((8100sin(180βˆ’3arccos((5/6))))/(36sin(arccos((5/6)))))  formule brute   .....................le celebre  cedric junior........
$$\boldsymbol{\mathrm{calculons}}\:\boldsymbol{\mathrm{A}} \\ $$$$\boldsymbol{{d}}'\boldsymbol{{apres}}\:\boldsymbol{{le}}\:\boldsymbol{{theoreme}}\:\boldsymbol{{des}}\:\boldsymbol{{sinus}} \\ $$$$\frac{\mathrm{18}}{\boldsymbol{{sin}\sigma}}=\frac{\mathrm{30}}{\boldsymbol{{sin}\beta}}=\frac{\boldsymbol{{k}}}{\boldsymbol{{sin}\theta}}=\frac{\mathrm{540}\boldsymbol{{k}}}{\mathrm{2}\boldsymbol{{A}}}=\mathrm{2}{r} \\ $$$$=>\frac{\mathrm{18}}{{sin}\frac{\boldsymbol{\beta}}{\mathrm{2}}}=\frac{\mathrm{30}}{\mathrm{2}{sin}\frac{\boldsymbol{\beta}}{\mathrm{2}}\boldsymbol{{cos}}\frac{\boldsymbol{\beta}}{\mathrm{2}}}=\frac{{k}}{\boldsymbol{{sin}\theta}} \\ $$$$=>\mathrm{2}\boldsymbol{{cos}}\frac{\boldsymbol{\beta}}{\mathrm{2}}=\frac{\mathrm{10}}{\mathrm{6}}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$=>\boldsymbol{\beta}=\mathrm{2}\boldsymbol{{arcos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right) \\ $$$$=>\boldsymbol{\beta}=\mathrm{67}.\mathrm{11}=>\boldsymbol{\alpha}=\frac{\mathrm{67}.\mathrm{11}}{\mathrm{2}}=\mathrm{33}.\mathrm{55} \\ $$$$=>\frac{\mathrm{30}}{\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{arccos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)}=\frac{\boldsymbol{{k}}}{\boldsymbol{{sin}}\left(\mathrm{180}βˆ’\mathrm{3}\boldsymbol{{arcos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)} \\ $$$$\boldsymbol{{k}}=\frac{\mathrm{30}\boldsymbol{{sin}}\left(\mathrm{180}βˆ’\mathrm{3}\boldsymbol{{arccos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)}{\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{arccos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)} \\ $$$$\Leftrightarrow\frac{\mathrm{18}}{\boldsymbol{{sin}}\left(\boldsymbol{{arccos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)}=\frac{\mathrm{270}Γ—\mathrm{30}\boldsymbol{{sin}}\left(\mathrm{180}βˆ’\mathrm{3}\boldsymbol{{arccos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)}{\boldsymbol{{Asin}}\left(\mathrm{2}\boldsymbol{{arccos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)} \\ $$$$\Leftrightarrow\boldsymbol{{A}}=\frac{\mathrm{8100}\boldsymbol{{sin}}\left(\mathrm{180}βˆ’\mathrm{3}\boldsymbol{{arccos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)}{\mathrm{36}\boldsymbol{{sin}}\left(\boldsymbol{{arccos}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)} \\ $$$$\boldsymbol{{formule}}\:\boldsymbol{{brute}}\: \\ $$$$…………………{le}\:{celebre}\:\:{cedric}\:{junior}…….. \\ $$
Answered by Acem last updated on 02/Nov/22
What if we donβ€²t know or forgot at least one of   the formulas that our friend AST has used!   or even hadnβ€²t thought of his idea at solve.   Weβ€²ll go for a trick as follow:
$${What}\:{if}\:{we}\:{don}'{t}\:{know}\:{or}\:{forgot}\:{at}\:{least}\:{one}\:{of} \\ $$$$\:{the}\:{formulas}\:{that}\:{our}\:{friend}\:{AST}\:{has}\:{used}! \\ $$$$\:{or}\:{even}\:{hadn}'{t}\:{thought}\:{of}\:{his}\:{idea}\:{at}\:{solve}. \\ $$$$\:{We}'{ll}\:{go}\:{for}\:{a}\:{trick}\:{as}\:{follow}: \\ $$
Commented by Acem last updated on 02/Nov/22
Commented by Acem last updated on 02/Nov/22
 The square height is equal:   h^2 = a^2 βˆ’ c^2  = b^2 βˆ’ (c+a)^(2 )  β‡’ c= 7, h= (√(275))= 5 (√(11))   Area= (1/2) 32Γ— 5 (√(11)) = 80 (√(11)) β‰ˆ 265.33  un.^2
$$\:{The}\:{square}\:{height}\:{is}\:{equal}: \\ $$$$\:{h}^{\mathrm{2}} =\:{a}^{\mathrm{2}} βˆ’\:{c}^{\mathrm{2}} \:=\:{b}^{\mathrm{2}} βˆ’\:\left({c}+{a}\right)^{\mathrm{2}\:} \:\Rightarrow\:{c}=\:\mathrm{7},\:{h}=\:\sqrt{\mathrm{275}}=\:\mathrm{5}\:\sqrt{\mathrm{11}} \\ $$$$\:{Area}=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{32}Γ—\:\mathrm{5}\:\sqrt{\mathrm{11}}\:=\:\mathrm{80}\:\sqrt{\mathrm{11}}\:\approx\:\mathrm{265}.\mathrm{33}\:\:{un}.^{\mathrm{2}} \\ $$
Commented by manxsol last updated on 02/Nov/22
excellent geometry.I am learn
$${excellent}\:{geometry}.{I}\:{am}\:{learn} \\ $$
Commented by Acem last updated on 02/Nov/22
Thank you very much! Youβ€²re welcome friend
$${Thank}\:{you}\:{very}\:{much}!\:{You}'{re}\:{welcome}\:{friend} \\ $$
Answered by a.lgnaoui last updated on 02/Nov/22
Commented by Acem last updated on 02/Nov/22
Very well, Thanks friend!
$${Very}\:{well},\:{Thanks}\:{friend}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *