Menu Close

Question-179781




Question Number 179781 by Ari last updated on 02/Nov/22
Commented by Ari last updated on 02/Nov/22
who can solve it?
Commented by MJS_new last updated on 02/Nov/22
who cannot solve it?
$$\mathrm{who}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{it}? \\ $$
Commented by Acem last updated on 02/Nov/22
Why do you underestimate things?  Is this forum for only professors? even they   make mistakes!!  What if a student in elementary or even high   school followed the rule ∣x+2∣= ℓ ⇒ x+2= ±ℓ   and wrote in this case x+2= ±(3+5x) and   got x= −(1/4) , x= −(5/6) would you laugh at him   or teach, that is if there′s no possibility of    you make this mistake yourself, we didn′t see   your method. That is why our friend Ari asked   who can solve.
$${Why}\:{do}\:{you}\:{underestimate}\:{things}? \\ $$$${Is}\:{this}\:{forum}\:{for}\:{only}\:{professors}?\:{even}\:{they} \\ $$$$\:{make}\:{mistakes}!! \\ $$$${What}\:{if}\:{a}\:{student}\:{in}\:{elementary}\:{or}\:{even}\:{high} \\ $$$$\:{school}\:{followed}\:{the}\:{rule}\:\mid{x}+\mathrm{2}\mid=\:\ell\:\Rightarrow\:{x}+\mathrm{2}=\:\pm\ell \\ $$$$\:{and}\:{wrote}\:{in}\:{this}\:{case}\:{x}+\mathrm{2}=\:\pm\left(\mathrm{3}+\mathrm{5}{x}\right)\:{and} \\ $$$$\:{got}\:{x}=\:−\frac{\mathrm{1}}{\mathrm{4}}\:,\:{x}=\:−\frac{\mathrm{5}}{\mathrm{6}}\:{would}\:{you}\:{laugh}\:{at}\:{him} \\ $$$$\:{or}\:{teach},\:{that}\:{is}\:{if}\:{there}'{s}\:{no}\:{possibility}\:{of}\: \\ $$$$\:{you}\:{make}\:{this}\:{mistake}\:{yourself},\:{we}\:{didn}'{t}\:{see} \\ $$$$\:{your}\:{method}.\:{That}\:{is}\:{why}\:{our}\:{friend}\:{Ari}\:{asked} \\ $$$$\:{who}\:{can}\:{solve}. \\ $$$$ \\ $$$$ \\ $$
Commented by MJS_new last updated on 02/Nov/22
I′ve been here for years now and we had this  and similar discussions before.  you can ask a question. but then you have to  patiently wait for  an answer. we “professors”  are not here to answer any questions, we don′t  get paid and often we even don′t get a simple  thank yiu.  some around here have had enough of people  posting  “who can solve this”  “???... _([n times]) ”  or even  “can you solve this?”  “I bet nobody can solve this”  “only 1% can solve this”
$$\mathrm{I}'\mathrm{ve}\:\mathrm{been}\:\mathrm{here}\:\mathrm{for}\:\mathrm{years}\:\mathrm{now}\:\mathrm{and}\:\mathrm{we}\:\mathrm{had}\:\mathrm{this} \\ $$$$\mathrm{and}\:\mathrm{similar}\:\mathrm{discussions}\:\mathrm{before}. \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{ask}\:\mathrm{a}\:\mathrm{question}.\:\mathrm{but}\:\mathrm{then}\:\mathrm{you}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{patiently}\:\mathrm{wait}\:\mathrm{for}\:\:\mathrm{an}\:\mathrm{answer}.\:\mathrm{we}\:“\mathrm{professors}'' \\ $$$$\mathrm{are}\:\mathrm{not}\:\mathrm{here}\:\mathrm{to}\:\mathrm{answer}\:\mathrm{any}\:\mathrm{questions},\:\mathrm{we}\:\mathrm{don}'\mathrm{t} \\ $$$$\mathrm{get}\:\mathrm{paid}\:\mathrm{and}\:\mathrm{often}\:\mathrm{we}\:\mathrm{even}\:\mathrm{don}'\mathrm{t}\:\mathrm{get}\:\mathrm{a}\:\mathrm{simple} \\ $$$${thank}\:{yiu}. \\ $$$$\mathrm{some}\:\mathrm{around}\:\mathrm{here}\:\mathrm{have}\:\mathrm{had}\:\mathrm{enough}\:\mathrm{of}\:\mathrm{people} \\ $$$$\mathrm{posting} \\ $$$$“\mathrm{who}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}'' \\ $$$$“???…\:_{\left[{n}\:\mathrm{times}\right]} '' \\ $$$$\mathrm{or}\:\mathrm{even} \\ $$$$“\mathrm{can}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{this}?'' \\ $$$$“\mathrm{I}\:\mathrm{bet}\:\mathrm{nobody}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}'' \\ $$$$“\mathrm{only}\:\mathrm{1\%}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}'' \\ $$
Commented by Frix last updated on 02/Nov/22
it′s true that most of the time you get no  feedback at all.
$$\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{that}\:\mathrm{most}\:\mathrm{of}\:\mathrm{the}\:\mathrm{time}\:\mathrm{you}\:\mathrm{get}\:\mathrm{no} \\ $$$$\mathrm{feedback}\:\mathrm{at}\:\mathrm{all}. \\ $$
Commented by Rasheed.Sindhi last updated on 02/Nov/22
“who cannot solve it?” means “Every  one can solve it.”. I see no underestimation!
$$“\mathrm{who}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{it}?''\:{means}\:“\mathcal{E}{very} \\ $$$${one}\:{can}\:{solve}\:{it}.''.\:{I}\:{see}\:{no}\:{underestimation}! \\ $$
Commented by Acem last updated on 02/Nov/22
No my friebd Rasheed, not every one can
$${No}\:{my}\:{friebd}\:{Rasheed},\:{not}\:{every}\:{one}\:{can} \\ $$
Commented by Acem last updated on 02/Nov/22
I also don′t get paid and don′t wait for thanks   and i can, not put any question that has a benefit   or a special idea and not offer other methods   to solve and relax myself.   So, because i see some don′t save effort, i share   and do the same. and i can ignore the statement   “ who can solve it_(n times) ” without disturbing anyonr   and either i answer or ignore whole the qeustion    Am new, have been here for a few days, but i keep   in my mind that there are here young students    or sience enthusiasts.  Sincerely my friend
$${I}\:{also}\:{don}'{t}\:{get}\:{paid}\:{and}\:{don}'{t}\:{wait}\:{for}\:{thanks} \\ $$$$\:{and}\:{i}\:{can},\:{not}\:{put}\:{any}\:{question}\:{that}\:{has}\:{a}\:{benefit} \\ $$$$\:{or}\:{a}\:{special}\:{idea}\:{and}\:{not}\:{offer}\:{other}\:{methods} \\ $$$$\:{to}\:{solve}\:{and}\:{relax}\:{myself}. \\ $$$$\:{So},\:{because}\:{i}\:{see}\:{some}\:{don}'{t}\:{save}\:{effort},\:{i}\:{share} \\ $$$$\:{and}\:{do}\:{the}\:{same}.\:{and}\:{i}\:{can}\:{ignore}\:{the}\:{statement} \\ $$$$\:“\:{who}\:{can}\:{solve}\:{it}_{{n}\:{times}} ''\:{without}\:{disturbing}\:{anyonr} \\ $$$$\:{and}\:{either}\:{i}\:{answer}\:{or}\:{ignore}\:{whole}\:{the}\:{qeustion} \\ $$$$ \\ $$$${Am}\:{new},\:{have}\:{been}\:{here}\:{for}\:{a}\:{few}\:{days},\:{but}\:{i}\:{keep} \\ $$$$\:{in}\:{my}\:{mind}\:{that}\:{there}\:{are}\:{here}\:{young}\:{students}\: \\ $$$$\:{or}\:{sience}\:{enthusiasts}. \\ $$$${Sincerely}\:{my}\:{friend} \\ $$$$ \\ $$
Answered by mr W last updated on 02/Nov/22
∣x+2∣=3+5x ≥0   ⇒x≥−(3/5)  ⇒x+2≥−(3/5)+2=(7/5)>0  x+2=3+5x  ⇒x=−(1/4)
$$\mid{x}+\mathrm{2}\mid=\mathrm{3}+\mathrm{5}{x}\:\geqslant\mathrm{0}\: \\ $$$$\Rightarrow{x}\geqslant−\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\Rightarrow{x}+\mathrm{2}\geqslant−\frac{\mathrm{3}}{\mathrm{5}}+\mathrm{2}=\frac{\mathrm{7}}{\mathrm{5}}>\mathrm{0} \\ $$$${x}+\mathrm{2}=\mathrm{3}+\mathrm{5}{x} \\ $$$$\Rightarrow{x}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by Acem last updated on 02/Nov/22
Good friend!
$${Good}\:{friend}! \\ $$
Commented by Acem last updated on 02/Nov/22
yes the −(1/4) is correct
$${yes}\:{the}\:−\frac{\mathrm{1}}{\mathrm{4}}\:{is}\:{correct} \\ $$
Answered by Frix last updated on 04/Nov/22
x+2=t  ∣t∣=5t−7  ∣t∣+7=5t     (∣t∣+7>0 ⇒ 5t>0 ⇔ t>0)  t+7=5t  t=(7/4) ⇒ x=−(1/4)
$${x}+\mathrm{2}={t} \\ $$$$\mid{t}\mid=\mathrm{5}{t}−\mathrm{7} \\ $$$$\mid{t}\mid+\mathrm{7}=\mathrm{5}{t}\:\:\:\:\:\left(\mid{t}\mid+\mathrm{7}>\mathrm{0}\:\Rightarrow\:\mathrm{5}{t}>\mathrm{0}\:\Leftrightarrow\:{t}>\mathrm{0}\right) \\ $$$${t}+\mathrm{7}=\mathrm{5}{t} \\ $$$${t}=\frac{\mathrm{7}}{\mathrm{4}}\:\Rightarrow\:{x}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by Acem last updated on 02/Nov/22
Good friend!   simple note: you should′nt write   ∣t∣+7>0 ⇒ 5t>0 ⇔ t>0 between brackets   cause this statement is a step in finding a solution   not as an explanation. Thanks!
$${Good}\:{friend}! \\ $$$$\:{simple}\:{note}:\:{you}\:{should}'{nt}\:{write} \\ $$$$\:\mid{t}\mid+\mathrm{7}>\mathrm{0}\:\Rightarrow\:\mathrm{5}{t}>\mathrm{0}\:\Leftrightarrow\:{t}>\mathrm{0}\:{between}\:{brackets} \\ $$$$\:{cause}\:{this}\:{statement}\:{is}\:{a}\:{step}\:{in}\:{finding}\:{a}\:{solution} \\ $$$$\:{not}\:{as}\:{an}\:{explanation}.\:{Thanks}! \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *