Menu Close

Question-179999




Question Number 179999 by yaslm last updated on 05/Nov/22
Commented by mokys last updated on 05/Nov/22
lnx − 1 = y → lnx = y + 1→ x = e^(y+1) → dx = e^(y+1) dy    I = ∫ (y+1) e^(y^2 +y)  e^(y+1) dy = ∫ (y+1) e^((y+1)^2 ) dy     I = (1/2) e^((y+1)^2 )  + C = (1/2) e^(ln^2 x)  +c
$${lnx}\:−\:\mathrm{1}\:=\:{y}\:\rightarrow\:{lnx}\:=\:{y}\:+\:\mathrm{1}\rightarrow\:{x}\:=\:{e}^{{y}+\mathrm{1}} \rightarrow\:{dx}\:=\:{e}^{{y}+\mathrm{1}} {dy} \\ $$$$ \\ $$$${I}\:=\:\int\:\left({y}+\mathrm{1}\right)\:{e}^{{y}^{\mathrm{2}} +{y}} \:{e}^{{y}+\mathrm{1}} {dy}\:=\:\int\:\left({y}+\mathrm{1}\right)\:{e}^{\left({y}+\mathrm{1}\right)^{\mathrm{2}} } {dy}\: \\ $$$$ \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{\left({y}+\mathrm{1}\right)^{\mathrm{2}} } \:+\:{C}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{{ln}^{\mathrm{2}} {x}} \:+{c} \\ $$
Answered by Gamil last updated on 05/Nov/22

Leave a Reply

Your email address will not be published. Required fields are marked *