Question Number 180035 by a.lgnaoui last updated on 06/Nov/22
$$ \\ $$
Commented by a.lgnaoui last updated on 06/Nov/22
Commented by mnjuly1970 last updated on 06/Nov/22
Commented by a.lgnaoui last updated on 06/Nov/22
$$\left({suite}\right) \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{4}^{{n}} }×\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)\:}=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{4}^{{n}} }=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \left(\frac{\mathrm{4}^{{n}} −\mathrm{1}}{\mathrm{4}^{{n}} }\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by mr W last updated on 07/Nov/22
$${totally}\:{wrong}! \\ $$$${example}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:{means}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+…+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right) \\ $$$${not}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:! \\ $$$$ \\ $$$${according}\:{to}\:{your}\:{logic},\:{it}\:{should}\:{be} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{4}^{{n}} }×\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)\:}=\sum_{{n}=\mathrm{1}} ^{\infty} \mathrm{0}×\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:\mathrm{0}}=\mathrm{0} \\ $$$${this}\:{is}\:{certainly}\:{non}−{sense}! \\ $$