Menu Close

Question-180188




Question Number 180188 by Shrinava last updated on 08/Nov/22
Answered by Rasheed.Sindhi last updated on 09/Nov/22
Formulas:   determinant (((   [((     l),m),((−m),l) ] [((    p),q),((−q),p) ]= [((      lp−mq),(lq+mp)),((−(lq+mp)),(lp−mq)) ]_  ^  )))    determinant (((( [((     l),m),((−m),l) ])^2  = [((l^2 −m^2 ),(2lm)),((−2lm),(l^2 −m^2 )) ])))    A= [((    a_1 ),b_1 ),((−b_1 ),a_1 ) ]= [((    5),1),((−1),5) ]  A^2 = [((    a_2 ),b_2 ),((−b_2 ),a_2 ) ]= [((    24),(10)),((−10),(24)) ]  (A^2 )^2 = [((    a_4 ),b_4 ),((−b_4 ),a_4 ) ]= [((     476),(480)),((−480),(476)) ]     A^4 ∙A= [((     476),(480)),((−480),(476)) ] [((    5),1),((−1),5) ]    A^5 = [((    a_5 ),b_5 ),((−b_5 ),a_5 ) ]= [((    1900),(2876)),((−2876),(1900)) ]   (A^5 )^2 =( [((    1900),(2876)),((−2876),(1900)) ])^2   A^(10) = [((−4661376),(     10928800)),((−10928800),(−4661376)) ]   (A^(10) )^2 =( [((−4661376),(     10928800)),((−10928800),(−4661376)) ])^2   A^(20) = [((    a_(20) ),b_(20) ),((−b_(20) ),a_(20) ) ]  = [((−97 710 243 226 624),(−101 886 492 057 600)),((  101 886 492 057 600),(  −97 710 243 226 624)) ]  Ω=((a_(20) +ib_(20) ))^(1/3)    =((−97 710 243 226 624−101 886 492 057 600i))^(1/3)    =−((97 710 243 226 624+101 886 492 057 600i))^(1/3)
$$\mathcal{F}{ormulas}: \\ $$$$\begin{array}{|c|}{\:\:\begin{bmatrix}{\:\:\:\:\:{l}}&{{m}}\\{−{m}}&{{l}}\end{bmatrix}\begin{bmatrix}{\:\:\:\:{p}}&{{q}}\\{−{q}}&{{p}}\end{bmatrix}=\begin{bmatrix}{\:\:\:\:\:\:{lp}−{mq}}&{{lq}+{mp}}\\{−\left({lq}+{mp}\right)}&{{lp}−{mq}}\end{bmatrix}_{\:} ^{\:} }\\\hline\end{array}\: \\ $$$$\begin{array}{|c|}{\left(\begin{bmatrix}{\:\:\:\:\:{l}}&{{m}}\\{−{m}}&{{l}}\end{bmatrix}\right)^{\mathrm{2}} \:=\begin{bmatrix}{{l}^{\mathrm{2}} −{m}^{\mathrm{2}} }&{\mathrm{2}{lm}}\\{−\mathrm{2}{lm}}&{{l}^{\mathrm{2}} −{m}^{\mathrm{2}} }\end{bmatrix}}\\\hline\end{array} \\ $$$$ \\ $$$${A}=\begin{bmatrix}{\:\:\:\:{a}_{\mathrm{1}} }&{{b}_{\mathrm{1}} }\\{−{b}_{\mathrm{1}} }&{{a}_{\mathrm{1}} }\end{bmatrix}=\begin{bmatrix}{\:\:\:\:\mathrm{5}}&{\mathrm{1}}\\{−\mathrm{1}}&{\mathrm{5}}\end{bmatrix} \\ $$$${A}^{\mathrm{2}} =\begin{bmatrix}{\:\:\:\:{a}_{\mathrm{2}} }&{{b}_{\mathrm{2}} }\\{−{b}_{\mathrm{2}} }&{{a}_{\mathrm{2}} }\end{bmatrix}=\begin{bmatrix}{\:\:\:\:\mathrm{24}}&{\mathrm{10}}\\{−\mathrm{10}}&{\mathrm{24}}\end{bmatrix} \\ $$$$\left({A}^{\mathrm{2}} \right)^{\mathrm{2}} =\begin{bmatrix}{\:\:\:\:{a}_{\mathrm{4}} }&{{b}_{\mathrm{4}} }\\{−{b}_{\mathrm{4}} }&{{a}_{\mathrm{4}} }\end{bmatrix}=\begin{bmatrix}{\:\:\:\:\:\mathrm{476}}&{\mathrm{480}}\\{−\mathrm{480}}&{\mathrm{476}}\end{bmatrix} \\ $$$$\:\:\:{A}^{\mathrm{4}} \centerdot{A}=\begin{bmatrix}{\:\:\:\:\:\mathrm{476}}&{\mathrm{480}}\\{−\mathrm{480}}&{\mathrm{476}}\end{bmatrix}\begin{bmatrix}{\:\:\:\:\mathrm{5}}&{\mathrm{1}}\\{−\mathrm{1}}&{\mathrm{5}}\end{bmatrix} \\ $$$$\:\:{A}^{\mathrm{5}} =\begin{bmatrix}{\:\:\:\:{a}_{\mathrm{5}} }&{{b}_{\mathrm{5}} }\\{−{b}_{\mathrm{5}} }&{{a}_{\mathrm{5}} }\end{bmatrix}=\begin{bmatrix}{\:\:\:\:\mathrm{1900}}&{\mathrm{2876}}\\{−\mathrm{2876}}&{\mathrm{1900}}\end{bmatrix} \\ $$$$\:\left({A}^{\mathrm{5}} \right)^{\mathrm{2}} =\left(\begin{bmatrix}{\:\:\:\:\mathrm{1900}}&{\mathrm{2876}}\\{−\mathrm{2876}}&{\mathrm{1900}}\end{bmatrix}\right)^{\mathrm{2}} \\ $$$${A}^{\mathrm{10}} =\begin{bmatrix}{−\mathrm{4661376}}&{\:\:\:\:\:\mathrm{10928800}}\\{−\mathrm{10928800}}&{−\mathrm{4661376}}\end{bmatrix}\: \\ $$$$\left({A}^{\mathrm{10}} \right)^{\mathrm{2}} =\left(\begin{bmatrix}{−\mathrm{4661376}}&{\:\:\:\:\:\mathrm{10928800}}\\{−\mathrm{10928800}}&{−\mathrm{4661376}}\end{bmatrix}\right)^{\mathrm{2}} \\ $$$${A}^{\mathrm{20}} =\begin{bmatrix}{\:\:\:\:{a}_{\mathrm{20}} }&{{b}_{\mathrm{20}} }\\{−{b}_{\mathrm{20}} }&{{a}_{\mathrm{20}} }\end{bmatrix} \\ $$$$=\begin{bmatrix}{−\mathrm{97}\:\mathrm{710}\:\mathrm{243}\:\mathrm{226}\:\mathrm{624}}&{−\mathrm{101}\:\mathrm{886}\:\mathrm{492}\:\mathrm{057}\:\mathrm{600}}\\{\:\:\mathrm{101}\:\mathrm{886}\:\mathrm{492}\:\mathrm{057}\:\mathrm{600}}&{\:\:−\mathrm{97}\:\mathrm{710}\:\mathrm{243}\:\mathrm{226}\:\mathrm{624}}\end{bmatrix} \\ $$$$\Omega=\sqrt[{\mathrm{3}}]{{a}_{\mathrm{20}} +{ib}_{\mathrm{20}} }\: \\ $$$$=\sqrt[{\mathrm{3}}]{−\mathrm{97}\:\mathrm{710}\:\mathrm{243}\:\mathrm{226}\:\mathrm{624}−\mathrm{101}\:\mathrm{886}\:\mathrm{492}\:\mathrm{057}\:\mathrm{600}{i}}\: \\ $$$$=−\sqrt[{\mathrm{3}}]{\mathrm{97}\:\mathrm{710}\:\mathrm{243}\:\mathrm{226}\:\mathrm{624}+\mathrm{101}\:\mathrm{886}\:\mathrm{492}\:\mathrm{057}\:\mathrm{600}{i}}\: \\ $$
Commented by Shrinava last updated on 09/Nov/22
Thank you, but no dear professor
$$\mathrm{Thank}\:\mathrm{you},\:\mathrm{but}\:\mathrm{no}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Commented by Rasheed.Sindhi last updated on 17/Nov/22
Thanks Shirinava,please share  your solution or at least answer.
$$\mathcal{T}{hanks}\:{Shirinava},{please}\:{share} \\ $$$${your}\:{solution}\:{or}\:{at}\:{least}\:{answer}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *