Question Number 180300 by mnjuly1970 last updated on 10/Nov/22
Answered by Acem last updated on 11/Nov/22
Commented by Acem last updated on 11/Nov/22
$${Sorry}\:{i}\:{haven}'{t}\:{a}\:{compass} \\ $$
Commented by mr W last updated on 12/Nov/22
$${it}\:{is}\:{not}\:{given}\:{that}\:\angle{A}=\angle{C}=\mathrm{45}°. \\ $$$${so}\:\frac{{c}}{{AC}}\neq\frac{{r}}{\mathrm{2}{r}}. \\ $$
Commented by Acem last updated on 12/Nov/22
$${diameter}\:,\:{diameter}\:\:\:…\:{made}\:{me}\:{think}\:{that}\:{it}'{s} \\ $$$$\:{belong}\:{to}\:{the}\:{bigger}\:{circle}. \\ $$$$ \\ $$$${it}'{s}\:{good}\:{that}\:{the}\:{composer}\:{wrote}\:{this}\:{word} \\ $$$$\:{so}\:{that}\:{we}\:{don}'{t}\:{guess}\:{it}\:{as}\:{a}\:{square}! \\ $$
Answered by a.lgnaoui last updated on 11/Nov/22
$$\bigtriangleup\mathrm{OCD}\:\:\:\mathrm{OD}=\mathrm{OC}\:\:\measuredangle\mathrm{COD}=\mathrm{45}° \\ $$$$\bigtriangleup\mathrm{OAE}\:\:\mathrm{et}\:\:\bigtriangleup\mathrm{BCD}\:\left(\:\mathrm{triangles}\:\mathrm{rectangles}\right) \\ $$$$\mathrm{OB}=\mathrm{BD}=\mathrm{BC}\Rightarrow{a}+{b}={c}\:\left(\mathrm{1}\right) \\ $$$$\mathrm{cos}\:\mathrm{45}=\frac{{a}}{\mathrm{2}{r}}=\frac{{a}+{b}}{\mathrm{3}{r}}\:,\:\:\frac{{a}}{\mathrm{2}}=\frac{{a}+{b}}{\mathrm{3}}\:\Rightarrow\:\frac{{a}}{{b}}=\mathrm{2}\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\:\frac{{a}}{{b}}\sqrt{\frac{{c}}{{a}+{b}}}\:=\mathrm{2} \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 11/Nov/22
Commented by Acem last updated on 12/Nov/22
$${Cool}\:{aussi}!\:{d}'{accord},\:{comment}\:{savez}-{vous}\:{que} \\ $$$$\:{ED}=\:{r}? \\ $$
Commented by mr W last updated on 12/Nov/22
$$\angle{COD}\:{can}\:{be}\:{different}\:{than}\:\mathrm{45}°\:! \\ $$
Commented by mr W last updated on 12/Nov/22
Answered by mr W last updated on 12/Nov/22
Commented by mr W last updated on 12/Nov/22
$${c}=\mathrm{2}{R}\:\mathrm{sin}\:\alpha \\ $$$${a}+{b}=\frac{\mathrm{2}{R}}{\mathrm{tan}\:\alpha}×\mathrm{cos}\:\alpha \\ $$$$\frac{{c}}{{a}+{b}}=\frac{\mathrm{2}{R}\:\mathrm{sin}\:\alpha\:\mathrm{tan}\:\alpha}{\mathrm{2}{R}\:\mathrm{cos}\:\alpha}=\mathrm{tan}^{\mathrm{2}} \:\alpha \\ $$$$\Rightarrow\sqrt{\frac{{c}}{{a}+{b}}}=\mathrm{tan}\:\alpha \\ $$$$\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} }+{r}=\frac{\mathrm{2}{R}}{\mathrm{tan}\:\alpha} \\ $$$$\sqrt{\mathrm{2}{Rr}+{r}^{\mathrm{2}} }=\frac{\mathrm{2}{R}}{\mathrm{tan}\:\alpha}−{r} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}{R}}{\mathrm{tan}\:\alpha\:\left(\mathrm{tan}\:\alpha+\mathrm{2}\right)} \\ $$$${a}=\mathrm{2}{r}\:\mathrm{cos}\:\alpha=\frac{\mathrm{4}{R}\:\mathrm{cos}\:\alpha}{\mathrm{tan}\:\alpha\:\left(\mathrm{tan}\:\alpha+\mathrm{2}\right)} \\ $$$${b}=\frac{\mathrm{2}{R}}{\mathrm{tan}\:\alpha}×\mathrm{cos}\:\alpha−\frac{\mathrm{4}{R}\:\mathrm{cos}\:\alpha}{\mathrm{tan}\:\alpha\:\left(\mathrm{2}+\mathrm{tan}\:\alpha\right)} \\ $$$$\Rightarrow{b}=\frac{\mathrm{2}{R}\:\mathrm{cos}\:\alpha\:\mathrm{tan}\:\alpha}{\mathrm{tan}\:\alpha\:\left(\mathrm{tan}\:\alpha+\mathrm{2}\right)} \\ $$$$\frac{{a}}{{b}}=\frac{\mathrm{4}{R}\:\mathrm{cos}\:\alpha}{\mathrm{tan}\:\alpha\:\left(\mathrm{tan}\:\alpha+\mathrm{2}\right)}×\frac{\mathrm{tan}\:\alpha\:\left(\mathrm{tan}\:\alpha+\mathrm{2}\right)}{\mathrm{2}{R}\:\mathrm{cos}\:\alpha\:\mathrm{tan}\:\alpha} \\ $$$$\Rightarrow\frac{{a}}{{b}}=\frac{\mathrm{2}}{\mathrm{tan}\:\alpha} \\ $$$$\Rightarrow\frac{{a}}{{b}}\sqrt{\frac{{c}}{{a}+{b}}}=\frac{\mathrm{2}}{\mathrm{tan}\:\alpha}×\mathrm{tan}\:\alpha=\mathrm{2}\:\checkmark \\ $$