Menu Close

Question-180457




Question Number 180457 by liuxinnan last updated on 12/Nov/22
Commented by mr W last updated on 12/Nov/22
what′s the question?
$${what}'{s}\:{the}\:{question}? \\ $$
Commented by liuxinnan last updated on 12/Nov/22
what′s the question?  There are n points on a circle  and the lines between them  divide the circle into ? parts  at most.
$${what}'{s}\:{the}\:{question}? \\ $$$${There}\:{are}\:{n}\:{points}\:{on}\:{a}\:{circle} \\ $$$${and}\:{the}\:{lines}\:{between}\:{them} \\ $$$${divide}\:{the}\:{circle}\:{into}\:?\:{parts} \\ $$$${at}\:{most}. \\ $$
Commented by liuxinnan last updated on 12/Nov/22
we know n=1 ?=1  n=2 ?=2  n=3 ?=4  n=4 ?=8  n=5 ?=16  n=6 ?=31
$$\mathrm{we}\:\mathrm{know}\:\mathrm{n}=\mathrm{1}\:?=\mathrm{1} \\ $$$$\mathrm{n}=\mathrm{2}\:?=\mathrm{2} \\ $$$$\mathrm{n}=\mathrm{3}\:?=\mathrm{4} \\ $$$$\mathrm{n}=\mathrm{4}\:?=\mathrm{8} \\ $$$$\mathrm{n}=\mathrm{5}\:?=\mathrm{16} \\ $$$$\mathrm{n}=\mathrm{6}\:?=\mathrm{31} \\ $$
Commented by mr W last updated on 12/Nov/22
the general  answer is   C_4 ^n +C_2 ^n +1, or   ((n(n−1)(n^2 −5n+18))/(24))+1    following article about this topic  may be interesting to you...
$${the}\:{general}\:\:{answer}\:{is}\: \\ $$$$\boldsymbol{{C}}_{\mathrm{4}} ^{\boldsymbol{{n}}} +\boldsymbol{{C}}_{\mathrm{2}} ^{\boldsymbol{{n}}} +\mathrm{1},\:{or}\: \\ $$$$\frac{\boldsymbol{{n}}\left(\boldsymbol{{n}}−\mathrm{1}\right)\left(\boldsymbol{{n}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{{n}}+\mathrm{18}\right)}{\mathrm{24}}+\mathrm{1} \\ $$$$ \\ $$$${following}\:{article}\:{about}\:{this}\:{topic} \\ $$$${may}\:{be}\:{interesting}\:{to}\:{you}… \\ $$
Commented by mr W last updated on 12/Nov/22
Commented by mr W last updated on 12/Nov/22
http://jwilson.coe.uga.edu/EMAT6680Fa2013/Hendricks/Essay%204/Essay4.html
Commented by Emrice last updated on 12/Nov/22
j′ai aime votre article.
$${j}'{ai}\:{aime}\:{votre}\:{article}. \\ $$
Commented by mr W last updated on 12/Nov/22
merci beaucoup!
$$\mathrm{merci}\:\mathrm{beaucoup}! \\ $$
Commented by MJS_new last updated on 12/Nov/22
C_4 ^n +C_2 ^n +1=((n!)/(4!(n−4)!))+((n!)/(2!(n−2)!))+1=  =((n^4 −6n^3 +23n^2 −18n+24)/(24))  which gives the right values for n∈N
$${C}_{\mathrm{4}} ^{{n}} +{C}_{\mathrm{2}} ^{{n}} +\mathrm{1}=\frac{{n}!}{\mathrm{4}!\left({n}−\mathrm{4}\right)!}+\frac{{n}!}{\mathrm{2}!\left({n}−\mathrm{2}\right)!}+\mathrm{1}= \\ $$$$=\frac{{n}^{\mathrm{4}} −\mathrm{6}{n}^{\mathrm{3}} +\mathrm{23}{n}^{\mathrm{2}} −\mathrm{18}{n}+\mathrm{24}}{\mathrm{24}} \\ $$$$\mathrm{which}\:\mathrm{gives}\:\mathrm{the}\:\mathrm{right}\:\mathrm{values}\:\mathrm{for}\:{n}\in\mathbb{N} \\ $$
Commented by mr W last updated on 12/Nov/22
yes, thanks sir!
$${yes},\:{thanks}\:{sir}! \\ $$
Commented by SLVR last updated on 13/Nov/22
nice sir
$${nice}\:{sir} \\ $$
Answered by Acem last updated on 12/Nov/22
 Num. Parts=  ((n!)/((n−3)! 3!)) +n ✓+ (3n−14)^(not correc.)    ; n= 5^� ,  6 , 7    Note:   I know that the term 3n− 14 is still not correct
$$\:{Num}.\:{Parts}=\:\:\frac{\boldsymbol{{n}}!}{\left(\boldsymbol{{n}}−\mathrm{3}\right)!\:\mathrm{3}!}\:+\boldsymbol{{n}}\:\checkmark+\:\left(\mathrm{3}{n}−\mathrm{14}\right)^{{not}\:{correc}.} \\ $$$$\:;\:{n}=\:\bar {\mathrm{5}},\:\:\mathrm{6}\:,\:\mathrm{7} \\ $$$$\:\:{Note}: \\ $$$$\:{I}\:{know}\:{that}\:{the}\:{term}\:\mathrm{3}{n}−\:\mathrm{14}\:{is}\:{still}\:{not}\:{correct} \\ $$$$ \\ $$
Commented by liuxinnan last updated on 12/Nov/22
I do not know the truly answer too.thank you.
$${I}\:{do}\:{not}\:{know}\:{the}\:{truly}\:{answer}\:{too}.{thank}\:{you}. \\ $$
Commented by Acem last updated on 12/Nov/22
Thank you too!
$${Thank}\:{you}\:{too}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *