Question Number 180459 by mnjuly1970 last updated on 12/Nov/22
Answered by greougoury555 last updated on 12/Nov/22
$$\:\:\mathrm{cos}\:\mathrm{3}\alpha=\frac{\mathrm{1}}{\mathrm{2cos}\:\alpha} \\ $$$$\:\:\mathrm{4cos}\:^{\mathrm{3}} \alpha−\mathrm{3cos}\:\alpha=\frac{\mathrm{1}}{\mathrm{2cos}\:\alpha} \\ $$$$\:\:\mathrm{cos}\:\alpha=\:\frac{\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{17}}}}{\mathrm{4}}\: \\ $$$$\:\mathrm{sin}\:\alpha\:=\:\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{17}}}}{\mathrm{4}} \\ $$$$\:\mathrm{sin}\:\mathrm{2}\alpha\:=\:\frac{\sqrt{\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{17}}\:\right)\left(\mathrm{10}−\mathrm{2}\sqrt{\mathrm{17}}\:\right)}}{\mathrm{16}} \\ $$$$\:\mathrm{sin}\:\mathrm{2}\alpha\:=\:\frac{\sqrt{\left(\mathrm{3}+\sqrt{\mathrm{17}}\right)\left(\mathrm{5}−\sqrt{\mathrm{17}}\right)}}{\mathrm{8}}\:=\frac{\sqrt{\mathrm{2}\sqrt{\mathrm{17}}−\mathrm{2}}}{\mathrm{8}} \\ $$
Commented by mnjuly1970 last updated on 12/Nov/22
$$\:\:{bravo}\:{sir}\:..{excellent} \\ $$
Answered by mr W last updated on 12/Nov/22
$$\mathrm{sin}\:\mathrm{2}\alpha=\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\mathrm{3}\alpha} \\ $$$$\mathrm{2}\:\mathrm{cos}\:\alpha=\frac{\mathrm{1}}{\mathrm{cos}\:\alpha\left(\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{3}\right)} \\ $$$$\mathrm{8}\:\mathrm{cos}^{\mathrm{4}} \:\alpha−\mathrm{6}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\alpha=\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{8}} \\ $$$$\mathrm{cos}\:\mathrm{2}\alpha=\frac{−\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{sin}\:\mathrm{2}\alpha=\frac{\sqrt{\mathrm{2}\left(\sqrt{\mathrm{17}}−\mathrm{1}\right)}}{\mathrm{4}} \\ $$