Menu Close

Question-180510




Question Number 180510 by cherokeesay last updated on 13/Nov/22
Commented by JDamian last updated on 13/Nov/22
Great roundabout expression for "yellow rectangle"
Answered by MJS_new last updated on 13/Nov/22
((a/2))^2 +3=r^2 ∧(((3a)/2))^2 +a^2 =r^2   ⇒  r=((√(13))/2)∧a=1  the rest is easy
$$\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{3}={r}^{\mathrm{2}} \wedge\left(\frac{\mathrm{3}{a}}{\mathrm{2}}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${r}=\frac{\sqrt{\mathrm{13}}}{\mathrm{2}}\wedge{a}=\mathrm{1} \\ $$$$\mathrm{the}\:\mathrm{rest}\:\mathrm{is}\:\mathrm{easy} \\ $$
Answered by a.lgnaoui last updated on 13/Nov/22
 { ((((a/2))^2 +3=r^2      (1))),((a^2 +(((3a)/2))^2 =r^2     (2))) :}  a^2 +12=4a^2 +9a^2  ⇒  a=1  r=(√((1/4)+3)) =((√(13))/2)  (aeea of circle)×(1/2)=((π×13)/8)  Area=5,104  Area of magenta pink is  A=5,104−(2a^2 +(√3) a)      A=1,37
$$\begin{cases}{\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{3}={r}^{\mathrm{2}} \:\:\:\:\:\left(\mathrm{1}\right)}\\{{a}^{\mathrm{2}} +\left(\frac{\mathrm{3}{a}}{\mathrm{2}}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \:\:\:\:\left(\mathrm{2}\right)}\end{cases} \\ $$$${a}^{\mathrm{2}} +\mathrm{12}=\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}{a}^{\mathrm{2}} \:\Rightarrow\:\:{a}=\mathrm{1} \\ $$$${r}=\sqrt{\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{3}}\:=\frac{\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$$\left({aeea}\:{of}\:{circle}\right)×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi×\mathrm{13}}{\mathrm{8}} \\ $$$${Area}=\mathrm{5},\mathrm{104} \\ $$$${Area}\:{of}\:{magenta}\:{pink}\:{is} \\ $$$${A}=\mathrm{5},\mathrm{104}−\left(\mathrm{2}{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}\:{a}\right) \\ $$$$\:\:\:\:{A}=\mathrm{1},\mathrm{37} \\ $$
Commented by cherokeesay last updated on 13/Nov/22
Nice, thank you
$${Nice},\:{thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *