Menu Close

Question-180652




Question Number 180652 by Shrinava last updated on 14/Nov/22
Answered by aleks041103 last updated on 17/Nov/22
let detX=x⇒a=1  det(A^2 )=(detA)^2 =1=det(BC)=detBdetC  ⇒bc=1⇒b=(1/c)  B^2 =CA⇒b^2 =c⇒(1/c^2 )=c  C^2 =AB⇒c^2 =b⇒c^2 =(1/c)  ⇒c^3 =1=b^3   ⇒c^2 =(1/c)=b,b^3 =1  ⇒x^4 +6b^3 x^3 −14c^2 x^2 +6x+1=0  ⇒x^4 +6x^3 −14bx^2 +6x+1=0  obv. x≠0  ⇒(x^2 +(1/x^2 ))+6(x+(1/x))−14b=0  y=x+(1/x)  y^2 =x^2 +(1/x^2 )+2  ⇒y^2 −2+6y−14b=0  ⇒y^2 +6y−2(1+7b)=0  ⇒x+(1/x)=((−6±(√(44+56b)))/2)=−3±(√(11+14b))  ⇒x^2 −(−3±(√(11+14b)))x+1=0  ⇒x=(1/2)(−3±(√(11+14b))±(√((−3±(√(11+14b)))^2 −4)))  b^3 =1⇒b=1,e^(±((2iπ)/3))   for b=1:  x=(1/2)(−3±5±(√((−3±5)^2 −4)))=  =1,4±(√(15))  ...
letdetX=xa=1det(A2)=(detA)2=1=det(BC)=detBdetCbc=1b=1cB2=CAb2=c1c2=cC2=ABc2=bc2=1cc3=1=b3c2=1c=b,b3=1x4+6b3x314c2x2+6x+1=0x4+6x314bx2+6x+1=0obv.x0(x2+1x2)+6(x+1x)14b=0y=x+1xy2=x2+1x2+2y22+6y14b=0y2+6y2(1+7b)=0x+1x=6±44+56b2=3±11+14bx2(3±11+14b)x+1=0x=12(3±11+14b±(3±11+14b)24)b3=1b=1,e±2iπ3forb=1:x=12(3±5±(3±5)24)==1,4±15
Commented by Shrinava last updated on 17/Nov/22
Thank you very much dear professor  Your solutions are perfect
ThankyouverymuchdearprofessorYoursolutionsareperfect

Leave a Reply

Your email address will not be published. Required fields are marked *