Question Number 180882 by mr W last updated on 18/Nov/22
Commented by mr W last updated on 18/Nov/22
$${prove}\:{that}\:{the}\:{lengthes}\:{of}\:{the}\:{blue} \\ $$$${lines}\:{are}\:\mathrm{4}\:{times}\:{of}\:{the} \\ $$$${corresponding}\:{side}\:{lengthes}\:{of}\:{the} \\ $$$${triangle}. \\ $$$${all}\:{figures}\:{which}\:{look}\:{like}\:{squares} \\ $$$${are}\:{squares}. \\ $$
Answered by mr W last updated on 19/Nov/22
Commented by mr W last updated on 19/Nov/22
$${p}^{\mathrm{2}} ={b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{bc}\:\mathrm{cos}\:\left(\mathrm{180}°−\alpha\right) \\ $$$$\:\:\:\:={b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{bc}\:\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:={b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:=\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} =\mathrm{4}{m}_{{a}} ^{\mathrm{2}} \\ $$$$\Rightarrow{p}=\mathrm{2}{m}_{{a}} \:{with}\:{m}_{{a}} ={median}\:{to}\:{side}\:{a} \\ $$$$\frac{\mathrm{sin}\:\alpha_{\mathrm{1}} }{{c}}=\frac{\mathrm{sin}\:\alpha_{\mathrm{2}} }{{b}}=\frac{\mathrm{sin}\:\alpha}{{p}} \\ $$$$\mathrm{sin}\:\alpha_{\mathrm{1}} =\frac{{c}\:\mathrm{sin}\:\alpha}{\mathrm{2}{m}_{{a}} }=\frac{{ac}\:}{\mathrm{2}{m}_{{a}} }×\frac{\mathrm{sin}\:\alpha}{{a}} \\ $$$$\:\:\:\:\:=\frac{{ac}}{\mathrm{2}{m}_{{a}} }×\frac{\mathrm{sin}\:\gamma}{{c}}=\frac{{a}}{\mathrm{2}}×\frac{\mathrm{sin}\:\gamma}{{m}_{{a}} } \\ $$$$\Rightarrow{that}\:{means}\:{D}\:{lies}\:{on}\:{the}\:{median}, \\ $$$${i}.{e}.\:{D}\:{is}\:{the}\:{median}\:{center}\:\left({centoid}\right). \\ $$$${DA}=\frac{\mathrm{2}{m}_{{a}} }{\mathrm{3}}=\frac{{p}}{\mathrm{3}} \\ $$$${AA}'={p} \\ $$$${DA}'=\frac{{p}}{\mathrm{3}}+{p}=\frac{\mathrm{4}{p}}{\mathrm{3}} \\ $$$${similarly} \\ $$$${DB}'=\frac{\mathrm{4}{q}}{\mathrm{3}} \\ $$$${DC}'=\frac{\mathrm{4}{r}}{\mathrm{3}} \\ $$$$\Delta{A}'{B}'{C}'\sim\Delta{ABC} \\ $$$$\frac{{B}'{C}'}{{BC}}=\frac{{DB}'}{{DB}}=\mathrm{4} \\ $$$${B}'{C}'=\mathrm{4}{a}\:{and}\:{B}'{C}'//{BC} \\ $$$${similarly} \\ $$$${A}'{C}'=\mathrm{4}{b}\:{and}\:{A}'{C}'//{AC} \\ $$$${A}'{B}'=\mathrm{4}{c}\:{and}\:{A}'{B}'//{AB} \\ $$