Question Number 181019 by cherokeesay last updated on 20/Nov/22
Answered by som(math1967) last updated on 20/Nov/22
$$\:\:{cos}\mathrm{120}=\frac{\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} −{AE}^{\mathrm{2}} }{\mathrm{2}.\mathrm{2}.\mathrm{2}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{8}=\mathrm{8}−{AE}^{\mathrm{2}} \\ $$$$\Rightarrow{AE}=\sqrt{\mathrm{12}}=\mathrm{2}\sqrt{\mathrm{3}} \\ $$$${ar}\bigtriangleup{AEF}={ar}\bigtriangleup{DCE}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×\mathrm{2}{sin}\mathrm{120} \\ $$$$\:\:=\sqrt{\mathrm{3}}\:{sq}\:{unit} \\ $$$${ar}\:\bigtriangleup{ALE}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{1}×\mathrm{2}\sqrt{\mathrm{3}}=\sqrt{\mathrm{3}} \\ $$$${ar}\bigtriangleup{BLC}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{1}×\mathrm{2}×{sin}\mathrm{120} \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{squnit} \\ $$$${majent}\:{ar}=\sqrt{\mathrm{3}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{3}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{7}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${ar}\:{o}\:{hexagon}=\mathrm{6}×\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×\mathrm{4}=\mathrm{6}\sqrt{\mathrm{3}}{squ} \\ $$$$\:\frac{{Green}}{{Magenta}}=\frac{\mathrm{6}\sqrt{\mathrm{3}}−\frac{\mathrm{7}\sqrt{\mathrm{3}}}{\mathrm{2}}}{\frac{\mathrm{7}\sqrt{\mathrm{3}}}{\mathrm{2}}}=\frac{\mathrm{5}}{\mathrm{7}} \\ $$$$ \\ $$
Commented by som(math1967) last updated on 20/Nov/22
Commented by Acem last updated on 20/Nov/22
$${Super}\:{like}\:! \\ $$
Commented by cherokeesay last updated on 20/Nov/22
$${Nice}\:!\:{thank}\:{you}\:{sir}\:! \\ $$
Commented by som(math1967) last updated on 20/Nov/22
$${My}\:{pleasure} \\ $$