Menu Close

Question-181382




Question Number 181382 by liuxinnan last updated on 24/Nov/22
Commented by liuxinnan last updated on 24/Nov/22
n >?
$${n}\:>? \\ $$
Answered by Frix last updated on 24/Nov/22
(n/(log_2  n))=(n/((ln n)/(ln 2)))=((nln 2)/(ln n))  first solve the equation  (n/(ln n))=(3/(ln 2))  −((ln n)/n)=−((ln 2)/3)  let n=e^(−t)   te^t =((ln 2)/3)  LambertW−function leads to  t≈−2.29652∨t≈−.317338  ⇔  n≈9.93954∨n≈1.37347  now  (n/(ln n))>(3/(ln 2)) and obviously this leads to  1<n<≈1.37347∨n>≈9.93954
$$\frac{{n}}{\mathrm{log}_{\mathrm{2}} \:{n}}=\frac{{n}}{\frac{\mathrm{ln}\:{n}}{\mathrm{ln}\:\mathrm{2}}}=\frac{{n}\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:{n}} \\ $$$$\mathrm{first}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\frac{{n}}{\mathrm{ln}\:{n}}=\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{2}} \\ $$$$−\frac{\mathrm{ln}\:{n}}{{n}}=−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{let}\:{n}=\mathrm{e}^{−{t}} \\ $$$${t}\mathrm{e}^{{t}} =\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{LambertW}−\mathrm{function}\:\mathrm{leads}\:\mathrm{to} \\ $$$${t}\approx−\mathrm{2}.\mathrm{29652}\vee{t}\approx−.\mathrm{317338} \\ $$$$\Leftrightarrow \\ $$$${n}\approx\mathrm{9}.\mathrm{93954}\vee{n}\approx\mathrm{1}.\mathrm{37347} \\ $$$$\mathrm{now} \\ $$$$\frac{{n}}{\mathrm{ln}\:{n}}>\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{2}}\:\mathrm{and}\:\mathrm{obviously}\:\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\mathrm{1}<{n}<\approx\mathrm{1}.\mathrm{37347}\vee{n}>\approx\mathrm{9}.\mathrm{93954} \\ $$
Commented by Socracious last updated on 25/Nov/22
   where can I get the labert w function    calculator, please
$$\:\:\:\mathrm{where}\:\mathrm{can}\:\mathrm{I}\:\mathrm{get}\:\mathrm{the}\:\mathrm{labert}\:\mathrm{w}\:\mathrm{function} \\ $$$$\:\:\mathrm{calculator},\:\mathrm{please} \\ $$
Answered by mr W last updated on 24/Nov/22
n>0 and n≠1  case 0<n<1:  n<3 log_2  n<0   ⇒contradiction with n>0  ⇒no solution!  case n>1:  n>3 log_2  n=(3/(ln 2))×ln n  ((ln 2)/3)>ln n e^(−ln n)   −((ln 2)/3)<(−ln n) e^(−ln n)   −ln n<W(−((ln 2)/3))  ln n>−W(−((ln 2)/3))  n>(1/e^(W(−((ln 2)/3))) )=−((3 W(−((ln 2)/3)))/(ln 2))  since W(−((ln 2)/3)) has two values, the  other solution is  1<n<−((3 W(−((ln 2)/3)))/(ln 2)) with the bigger   value of W().    W(−((ln 2)/3))= { ((−2.296 520 3)),((−0.317 338 3)) :}
$${n}>\mathrm{0}\:{and}\:{n}\neq\mathrm{1} \\ $$$$\underline{{case}\:\mathrm{0}<{n}<\mathrm{1}:} \\ $$$${n}<\mathrm{3}\:\mathrm{log}_{\mathrm{2}} \:{n}<\mathrm{0}\: \\ $$$$\Rightarrow{contradiction}\:{with}\:{n}>\mathrm{0} \\ $$$$\Rightarrow{no}\:{solution}! \\ $$$$\underline{{case}\:{n}>\mathrm{1}:} \\ $$$${n}>\mathrm{3}\:\mathrm{log}_{\mathrm{2}} \:{n}=\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{2}}×\mathrm{ln}\:{n} \\ $$$$\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}>\mathrm{ln}\:{n}\:{e}^{−\mathrm{ln}\:{n}} \\ $$$$−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}<\left(−\mathrm{ln}\:{n}\right)\:{e}^{−\mathrm{ln}\:{n}} \\ $$$$−\mathrm{ln}\:{n}<{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\right) \\ $$$$\mathrm{ln}\:{n}>−{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\right) \\ $$$${n}>\frac{\mathrm{1}}{{e}^{{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\right)} }=−\frac{\mathrm{3}\:{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\right)}{\mathrm{ln}\:\mathrm{2}} \\ $$$${since}\:{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\right)\:{has}\:{two}\:{values},\:{the} \\ $$$${other}\:{solution}\:{is} \\ $$$$\mathrm{1}<{n}<−\frac{\mathrm{3}\:{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\right)}{\mathrm{ln}\:\mathrm{2}}\:{with}\:{the}\:{bigger}\: \\ $$$${value}\:{of}\:{W}\left(\right). \\ $$$$ \\ $$$${W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\right)=\begin{cases}{−\mathrm{2}.\mathrm{296}\:\mathrm{520}\:\mathrm{3}}\\{−\mathrm{0}.\mathrm{317}\:\mathrm{338}\:\mathrm{3}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *