Menu Close

Question-181394




Question Number 181394 by yaojun2t last updated on 24/Nov/22
Answered by FelipeLz last updated on 25/Nov/22
p: parabola  d: directrix  r: line passing through F  s: line passing through O   { ((F = (f, 0))),((O = (0, 0) )) :}→ d: x = −f  p: (x−f)^2 +(y−0)^2  = (x−(−f))^2 +(y−y)^2   p: (x−f)^2 +y^2  = (x+f)^2   p: y^2  = 4fx            A ∈ p → A = (a, 2(√(af)))            B ∈ p → B = (b, −2(√(bf)))  r: y = mx+n            F ∈ r → 0 = mf+n ⇒ n = −mf            A ∈ r → 2(√(af)) = ma−mf ⇒ m = ((2(√(af)))/(a−f))            B ∈ r → −2(√(bf)) = mb−mf ⇒ m = ((2(√(bf)))/(f−b))                 m = m                 ((2(√(af)))/(a−f)) = ((2(√(bf)))/(f−b))                 f(√a)−b(√a) = a(√b)−f(√b)                 f((√a)+(√b)) = a(√b)+b(√a)                 f((√a)+(√b)) = (√(ab))((√a)+(√b))                 f = (√(ab))          s: y = ux+v            O ∈ s → 0 = u×0+v ⇒ v = 0            A ∈ s → 2(√(af)) = ua+0 ⇒ u = 2(√(f/a)) = 2((b/a))^(1/4)   D = (−f, 2((b/a))^(1/4) ×(−f))  D = (−(√(ab)), −2((b/a))^(1/4) ×(√(ab)))  D = (−(√(ab)), −2((b/a))^(1/4) ×((a^2 b^2 ))^(1/4) )  D = (−(√(ab)), −2((ab^3 ))^(1/4) )  B = (b, −2(√(bf))) = (b, −2((ab^3 ))^(1/4) )  y_B  = y_D
p:parabolad:directrixr:linepassingthroughFs:linepassingthroughO{F=(f,0)O=(0,0)d:x=fp:(xf)2+(y0)2=(x(f))2+(yy)2p:(xf)2+y2=(x+f)2p:y2=4fxApA=(a,2af)BpB=(b,2bf)r:y=mx+nFr0=mf+nn=mfAr2af=mamfm=2afafBr2bf=mbmfm=2bffbm=m2afaf=2bffbfaba=abfbf(a+b)=ab+baf(a+b)=ab(a+b)f=abs:y=ux+vOs0=u×0+vv=0As2af=ua+0u=2fa=2ba4D=(f,2ba4×(f))D=(ab,2ba4×ab)D=(ab,2ba4×a2b24)D=(ab,2ab34)B=(b,2bf)=(b,2ab34)yB=yD

Leave a Reply

Your email address will not be published. Required fields are marked *