Menu Close

Question-181426




Question Number 181426 by universe last updated on 25/Nov/22
Commented by universe last updated on 25/Nov/22
true or false ?
$${true}\:{or}\:{false}\:? \\ $$
Answered by mr W last updated on 25/Nov/22
e^x =Σ_(n=0) ^∞ (x^n /(n!))    Σ_(n=0) ^∞ (((log log 2)^n )/(n!))  =e^((log log 2))   =log 2  =(3/5)log 2^(5/3)   =(3/5)log (32)^(1/3)   >(3/5)log (27)^(1/3) =(3/5)log 3>(3/5)log e=(3/5)  ⇒the inequality holds. TRUE!
$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\ $$$$ \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{log}\:\mathrm{log}\:\mathrm{2}\right)^{{n}} }{{n}!} \\ $$$$={e}^{\left(\mathrm{log}\:\mathrm{log}\:\mathrm{2}\right)} \\ $$$$=\mathrm{log}\:\mathrm{2} \\ $$$$=\frac{\mathrm{3}}{\mathrm{5}}\mathrm{log}\:\mathrm{2}^{\frac{\mathrm{5}}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{5}}\mathrm{log}\:\left(\mathrm{32}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$>\frac{\mathrm{3}}{\mathrm{5}}\mathrm{log}\:\left(\mathrm{27}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\frac{\mathrm{3}}{\mathrm{5}}\mathrm{log}\:\mathrm{3}>\frac{\mathrm{3}}{\mathrm{5}}\mathrm{log}\:{e}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\Rightarrow{the}\:{inequality}\:{holds}.\:{TRUE}! \\ $$
Commented by universe last updated on 25/Nov/22
thank sir
$${thank}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *