Question Number 181673 by cherokeesay last updated on 28/Nov/22
Answered by HeferH last updated on 28/Nov/22
$${A}\:=\:\frac{\left({r}_{\mathrm{1}} \:+\:{r}_{\mathrm{2}} \right){BD}}{\mathrm{2}}\: \\ $$$$\:{BD}\:=\:\mathrm{5}\:−\:\left(\frac{\mathrm{16}}{\mathrm{5}}\:+\:\mathrm{1}\right)\:=\:\frac{\mathrm{25}\:−\:\mathrm{21}}{\mathrm{5}}\:=\:\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\:{A}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\:+\:\frac{\mathrm{12}}{\mathrm{5}}\right)\frac{\mathrm{4}}{\mathrm{5}}\:\:=\:\frac{\mathrm{44}}{\mathrm{25}}\:{u}^{\mathrm{2}} \\ $$
Commented by cherokeesay last updated on 29/Nov/22
$${Nice}\:{solution}, \\ $$$${thank}\:{you}\:{sir}. \\ $$
Answered by a.lgnaoui last updated on 29/Nov/22
$${Area}=\mathrm{1},\mathrm{76} \\ $$
Answered by a.lgnaoui last updated on 29/Nov/22
Answered by a.lgnaoui last updated on 29/Nov/22
$$\mathrm{tan}\:\alpha=\frac{\mathrm{3}}{\mathrm{4}}\:\:\:\:\alpha=\mathrm{36},\mathrm{87} \\ $$$$\mathrm{AE}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} \:\:\:\:\mathrm{AE}=\mathrm{2}\sqrt{\mathrm{5}}\:\Rightarrow\mathrm{DE}=\mathrm{4} \\ $$$$\mathrm{EF}=\sqrt{\mathrm{CE}^{\mathrm{2}} +\mathrm{CF}^{\mathrm{2}} }\:=\sqrt{\mathrm{16}+\mathrm{9}}\:=\mathrm{5} \\ $$$$\mathrm{sin}\:\alpha=\frac{\mathrm{CF}}{\mathrm{EF}}=\frac{\mathrm{3}}{\mathrm{5}}\:\:=\frac{\mathrm{BC}}{\mathrm{CE}}\:\:\mathrm{BC}=\frac{\mathrm{12}}{\mathrm{5}}=\mathrm{2},\mathrm{4} \\ $$$$\mathrm{BE}^{\mathrm{2}} =\mathrm{CE}^{\mathrm{2}} −\mathrm{BC}^{\mathrm{2}} \:\:\Rightarrow\:\mathrm{BE}=\mathrm{3},\mathrm{2} \\ $$$${alors}\:\:\:\mathrm{BD}=\mathrm{DE}−\mathrm{BE}=\mathrm{0},\mathrm{8} \\ $$$${par}\:{consequant}:\:\:\:{Aire}={A}_{\mathrm{1}} +{A}_{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{AD}×\mathrm{BD}\right)=\frac{\mathrm{2}×\mathrm{0},\mathrm{8}}{\mathrm{2}}=\mathrm{0},\mathrm{8} \\ $$$$\mathrm{A}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{BD}×\mathrm{BC}\right)=\frac{\mathrm{2},\mathrm{4}×\mathrm{0},\mathrm{8}}{\mathrm{2}}=\mathrm{0},\mathrm{96} \\ $$$${A}=\mathrm{1},\mathrm{76} \\ $$$$ \\ $$
Commented by cherokeesay last updated on 29/Nov/22
$${Nice}\:! \\ $$$${thank}\:{you}\:{so}\:{much}. \\ $$