Menu Close

Question-181808




Question Number 181808 by mathocean1 last updated on 30/Nov/22
Commented by CElcedricjunior last updated on 01/Dec/22
A_t =A_(red) +A_(bleu) =>A_(red) =A_t −A_(bleu)   or A_t =((BH)/2)=((8×(√(8^2 −4^2 )))/2)=((8×4(√3))/2)=16(√3)  A_(bleu) =3(((4^2 𝛑)/6))=((4^2 𝛑)/2)=((16𝛑)/2)=8𝛑  A_(red) =16(√3)−8𝛑≈2.5800 um  =======================  ......le celebre cedric junior............  =====================.=.
$$\boldsymbol{{A}}_{\boldsymbol{{t}}} =\boldsymbol{{A}}_{{red}} +{A}_{{bleu}} =>{A}_{{red}} ={A}_{\boldsymbol{{t}}} −\boldsymbol{{A}}_{{bleu}} \\ $$$${or}\:{A}_{{t}} =\frac{\boldsymbol{{BH}}}{\mathrm{2}}=\frac{\mathrm{8}×\sqrt{\mathrm{8}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\mathrm{8}×\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{16}\sqrt{\mathrm{3}} \\ $$$${A}_{\boldsymbol{{bleu}}} =\mathrm{3}\left(\frac{\mathrm{4}^{\mathrm{2}} \boldsymbol{\pi}}{\mathrm{6}}\right)=\frac{\mathrm{4}^{\mathrm{2}} \boldsymbol{\pi}}{\mathrm{2}}=\frac{\mathrm{16}\boldsymbol{\pi}}{\mathrm{2}}=\mathrm{8}\boldsymbol{\pi} \\ $$$$\boldsymbol{{A}}_{{red}} =\mathrm{16}\sqrt{\mathrm{3}}−\mathrm{8}\boldsymbol{\pi}\approx\mathrm{2}.\mathrm{5800}\:{um} \\ $$$$======================= \\ $$$$……{le}\:{celebre}\:{cedric}\:{junior}………… \\ $$$$=====================.=. \\ $$$$ \\ $$$$ \\ $$
Answered by BaliramKumar last updated on 30/Nov/22
red = ((√3)/4)×8^2  − 3×((60)/(360))×π×4^2  = 16(√3) − 8π
$${red}\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×\mathrm{8}^{\mathrm{2}} \:−\:\mathrm{3}×\frac{\mathrm{60}}{\mathrm{360}}×\pi×\mathrm{4}^{\mathrm{2}} \:=\:\mathrm{16}\sqrt{\mathrm{3}}\:−\:\mathrm{8}\pi \\ $$
Answered by HeferH last updated on 30/Nov/22
8(2(√3) − π)
$$\mathrm{8}\left(\mathrm{2}\sqrt{\mathrm{3}}\:−\:\pi\right) \\ $$
Answered by a.lgnaoui last updated on 01/Dec/22
aire triagle=8×4×sin( (π/3))=16(√3)  aire region Rouge =16(√3) −8π  =16(√3) −8π  Aire=2,58
$${aire}\:{triagle}=\mathrm{8}×\mathrm{4}×\mathrm{sin}\left(\:\frac{\pi}{\mathrm{3}}\right)=\mathrm{16}\sqrt{\mathrm{3}} \\ $$$${aire}\:{region}\:{Rouge}\:=\mathrm{16}\sqrt{\mathrm{3}}\:−\mathrm{8}\pi \\ $$$$=\mathrm{16}\sqrt{\mathrm{3}}\:−\mathrm{8}\pi \\ $$$${Aire}=\mathrm{2},\mathrm{58} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *