Menu Close

Question-181897




Question Number 181897 by Acem last updated on 01/Dec/22
Answered by mr W last updated on 02/Dec/22
T_k =(k^2 /(k^2 −10k+50))=(k^2 /((k−5)^2 +5^2 ))  T_5 =(5^2 /5^2 )=1  T_1 +T_9 =(((5−4)^2 )/(4^2 +5^2 ))+(((5+4)^2 )/(4^2 +5^2 ))=((2(4^2 +5^2 ))/(4^2 +5^2 ))=2  T_2 +T_8 =(((5−3)^2 )/(3^2 +5^2 ))+(((5+3)^2 )/(3^2 +5^2 ))=((2(3^2 +5^2 ))/(3^2 +5^2 ))=2  T_3 +T_7 =...=2  T_4 +T_6 =...=2  ⇒T_1 +T_2 +...+T_9 =1+4×2=9 ✓
Tk=k2k210k+50=k2(k5)2+52T5=5252=1T1+T9=(54)242+52+(5+4)242+52=2(42+52)42+52=2T2+T8=(53)232+52+(5+3)232+52=2(32+52)32+52=2T3+T7==2T4+T6==2T1+T2++T9=1+4×2=9
Commented by Acem last updated on 02/Dec/22
Very well! Thanks
Verywell!Thanks
Answered by Acem last updated on 02/Dec/22
(1^2 /(1^2 −10+50))= ((2.1^2 )/(1^2 +1−20+100))=  ((2.1^2 )/(1^2 + (10−1)^2 )) ...i  (9^2 /(9^2 −90+50))= ((2 (10−1)^2 )/((10−1)^2 +(10−1)^2 −20(10−1)+100))                      = ((2 (10−1)^2 )/((10−1)^2 +[10−(10−1)]^2 ))= ((2 (10−1)^2 )/(1^2 +(10−1)^2 )) ...ii     i+ii = ((2 [1+(10−1)^2 ])/(1+(10−1)^2 ))= 2   Then ((2n^2 )/(n^2 +(10−n)^2 ))+ ((2 (10−n)^2 )/(n^2 +(10−n)^2 ))= 2 ∀n∈ N, n> 0     we have n= 9 : n=1 to 9 ; Terms= {1, 2, ..., 9}   Sum= 4×2_(1,9& 2,8,...) + T_5 = 9 ; T_5 = 1
121210+50=2.1212+120+100=2.1212+(101)2i929290+50=2(101)2(101)2+(101)220(101)+100=2(101)2(101)2+[10(101)]2=2(101)212+(101)2iii+ii=2[1+(101)2]1+(101)2=2Then2n2n2+(10n)2+2(10n)2n2+(10n)2=2nN,n>0wehaven=9:n=1to9;Terms={1,2,,9}Sum=4×21,9&2,8,+T5=9;T5=1

Leave a Reply

Your email address will not be published. Required fields are marked *