Question Number 181998 by Tolmasbek last updated on 03/Dec/22
Answered by a.lgnaoui last updated on 03/Dec/22
$$\alpha=\mathrm{3}\left(\frac{\pi}{\mathrm{18}}+\frac{\pi{n}}{\mathrm{9}}\right) \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{18}}+\frac{\pi{n}}{\mathrm{9}}\right)\left[\mathrm{3}−\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{18}}+\frac{\pi{n}}{\mathrm{9}}\right)\right]}{\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{18}}+\frac{\pi{n}}{\mathrm{9}}\right)} \\ $$$$=\frac{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)\left[\mathrm{3}−\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)\right]\right.\right.}{\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)\right.} \\ $$$$\begin{cases}{\frac{\pi}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)\neq\frac{\pi}{\mathrm{2}}+{k}\pi}\\{\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)\right)\neq\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{\:{n}\:\neq\mathrm{4}+\mathrm{9}{k}\:\:\:\left({k}\in\mathbb{Z}^{+} \right)}\\{{n}\neq\mathrm{1}+{k}\:\:{and}\:\:{n}\neq\mathrm{9}{k}−\mathrm{2}\:\:\:\:\:}\end{cases} \\ $$$${donc}\:\:\:\:{n}\neq\mathrm{2}{k}\:\:\:{k}\in\mathbb{Z}\:\:{k}>\mathrm{1} \\ $$$${So},\:\:\:\:\:\alpha\:\:\:{is}\:{not}\:{also}\:{true} \\ $$