Menu Close

Question-182075




Question Number 182075 by Acem last updated on 04/Dec/22
Commented by Acem last updated on 04/Dec/22
Regular hexagon ↑
$${Regular}\:{hexagon}\:\uparrow \\ $$
Answered by mr W last updated on 04/Dec/22
Commented by mr W last updated on 04/Dec/22
say area of the regular hexagon is A.  it can be easily seen that  X+Y=(A/6)  S_2 =(A/3)    on the other side  S_1 +S_2 +S_3 +X+Y=A  ⇒S_1 +S_3 =A−(A/3)−(A/6)=(A/2)    ⇒((S_1 +S_3 )/S_2 )=((A/2)/(A/3))=(3/2)  ⇒((S_1 +2.3)/(3.4))=(3/2)  ⇒S_1 =((3×3.4)/2)−2.3=2.8 ✓
$${say}\:{area}\:{of}\:{the}\:{regular}\:{hexagon}\:{is}\:{A}. \\ $$$${it}\:{can}\:{be}\:{easily}\:{seen}\:{that} \\ $$$${X}+{Y}=\frac{{A}}{\mathrm{6}} \\ $$$${S}_{\mathrm{2}} =\frac{{A}}{\mathrm{3}}\:\: \\ $$$${on}\:{the}\:{other}\:{side} \\ $$$${S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} +{X}+{Y}={A} \\ $$$$\Rightarrow{S}_{\mathrm{1}} +{S}_{\mathrm{3}} ={A}−\frac{{A}}{\mathrm{3}}−\frac{{A}}{\mathrm{6}}=\frac{{A}}{\mathrm{2}}\:\: \\ $$$$\Rightarrow\frac{{S}_{\mathrm{1}} +{S}_{\mathrm{3}} }{{S}_{\mathrm{2}} }=\frac{\frac{{A}}{\mathrm{2}}}{\frac{{A}}{\mathrm{3}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{{S}_{\mathrm{1}} +\mathrm{2}.\mathrm{3}}{\mathrm{3}.\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{S}_{\mathrm{1}} =\frac{\mathrm{3}×\mathrm{3}.\mathrm{4}}{\mathrm{2}}−\mathrm{2}.\mathrm{3}=\mathrm{2}.\mathrm{8}\:\checkmark \\ $$
Commented by Acem last updated on 04/Dec/22
Yes, thanks Sir!
$${Yes},\:{thanks}\:{Sir}! \\ $$
Answered by Acem last updated on 04/Dec/22

Leave a Reply

Your email address will not be published. Required fields are marked *