Menu Close

Question-182091




Question Number 182091 by mr W last updated on 04/Dec/22
Commented by mr W last updated on 04/Dec/22
the areas of three squares are given.  find the sum of the areas of the other  four squares.
$${the}\:{areas}\:{of}\:{three}\:{squares}\:{are}\:{given}. \\ $$$${find}\:{the}\:{sum}\:{of}\:{the}\:{areas}\:{of}\:{the}\:{other} \\ $$$${four}\:{squares}. \\ $$
Answered by JDamian last updated on 04/Dec/22
8  S_k  and S_(k+1)  are related by Pythagorean  theorem:    S_1 +S_2 =3  (i)  S_2 +S_3 =4  S_3 +S_4 =5 (ii)    i + ii   =   S_1 +S_2 +S_3 +S_4 =3+5=8
$$\mathrm{8} \\ $$$${S}_{{k}} \:{and}\:{S}_{{k}+\mathrm{1}} \:{are}\:{related}\:{by}\:{Pythagorean} \\ $$$${theorem}: \\ $$$$ \\ $$$${S}_{\mathrm{1}} +{S}_{\mathrm{2}} =\mathrm{3}\:\:\left({i}\right) \\ $$$${S}_{\mathrm{2}} +{S}_{\mathrm{3}} =\mathrm{4} \\ $$$${S}_{\mathrm{3}} +{S}_{\mathrm{4}} =\mathrm{5}\:\left({ii}\right) \\ $$$$ \\ $$$${i}\:+\:{ii}\:\:\:=\:\:\:{S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} +{S}_{\mathrm{4}} =\mathrm{3}+\mathrm{5}=\mathrm{8} \\ $$
Commented by mr W last updated on 04/Dec/22
thanks!  nice solution!  following diagram gives some more  explanation.
$${thanks}! \\ $$$${nice}\:{solution}! \\ $$$${following}\:{diagram}\:{gives}\:{some}\:{more} \\ $$$${explanation}. \\ $$
Commented by mr W last updated on 04/Dec/22
Commented by mr W last updated on 04/Dec/22
c^2 =a^2 +b^2   ⇒A_1 =A_2 +A_3
$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\Rightarrow{A}_{\mathrm{1}} ={A}_{\mathrm{2}} +{A}_{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *