Question Number 182280 by BHOOPENDRA last updated on 06/Dec/22
Commented by BHOOPENDRA last updated on 06/Dec/22
Commented by BHOOPENDRA last updated on 07/Dec/22
$${can}\:{you}\:{please}\:{try}\:{Mr}.{W} \\ $$
Answered by mr W last updated on 08/Dec/22
Commented by BHOOPENDRA last updated on 08/Dec/22
$${Nice}\:{sir} \\ $$
Commented by mr W last updated on 08/Dec/22
Commented by mr W last updated on 08/Dec/22
$$\alpha:\:{direction}\:{of}\:{force} \\ $$$$\phi:\:{direction}\:{of}\:{motion},\:{opposite}\:{to} \\ $$$$\:\:\:\:\:{direction}\:{of}\:{friction}\:{force} \\ $$$${F}_{{friction}} =\mu{mg}\:\mathrm{cos}\:\theta \\ $$$$ \\ $$$$\left({F}\:\mathrm{sin}\:\alpha\right)^{\mathrm{2}} +\left({F}\:\mathrm{cos}\:\alpha−{mg}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} =\left(\mu{mg}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$${F}^{\mathrm{2}} \:−\mathrm{2}{mg}\:\mathrm{cos}\:\alpha\:\mathrm{sin}\:\theta\:{F}−{m}^{\mathrm{2}} {g}^{\mathrm{2}} \left(\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta\right)=\mathrm{0} \\ $$$$\Rightarrow{F}={mg}\:\left[\mathrm{cos}\:\alpha\:\mathrm{sin}\:\theta+\sqrt{\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\alpha\right)\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta}\right] \\ $$$$ \\ $$$$\mu{mg}\:\mathrm{cos}\:\theta\:\mathrm{sin}\:\phi={F}\:\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\mathrm{sin}\:\phi=\frac{\:\mathrm{sin}\:\alpha\left[\mathrm{cos}\:\alpha\:\mathrm{sin}\:\theta+\sqrt{\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\alpha\right)\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta}\right]}{\mu\:\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\phi=\mathrm{sin}^{−\mathrm{1}} \frac{\:\mathrm{sin}\:\alpha\left[\mathrm{cos}\:\alpha\:\mathrm{tan}\:\theta+\sqrt{\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\alpha\right)\:\mathrm{tan}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} }\right]}{\mu} \\ $$