Menu Close

Question-182423




Question Number 182423 by Noorzai last updated on 09/Dec/22
Answered by JDamian last updated on 09/Dec/22
KK=11k  LL=11l    KK×LL=11^2 kl=4235  kl=35=5×7  5+7=12
$${KK}=\mathrm{11}{k} \\ $$$${LL}=\mathrm{11}{l} \\ $$$$ \\ $$$${KK}×{LL}=\mathrm{11}^{\mathrm{2}} {kl}=\mathrm{4235} \\ $$$${kl}=\mathrm{35}=\mathrm{5}×\mathrm{7} \\ $$$$\mathrm{5}+\mathrm{7}=\mathrm{12} \\ $$
Answered by Rasheed.Sindhi last updated on 09/Dec/22
4235=5×7×11×11            =(5×11)×(7×11)            =55×77             =KK×LL  (K=5 ∧ L=7) ∨ (K=7 ∧ L=5)  K+L=5+7=12
$$\mathrm{4235}=\mathrm{5}×\mathrm{7}×\mathrm{11}×\mathrm{11} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{5}×\mathrm{11}\right)×\left(\mathrm{7}×\mathrm{11}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{55}×\mathrm{77} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{KK}×\mathrm{LL} \\ $$$$\left(\mathrm{K}=\mathrm{5}\:\wedge\:\mathrm{L}=\mathrm{7}\right)\:\vee\:\left(\mathrm{K}=\mathrm{7}\:\wedge\:\mathrm{L}=\mathrm{5}\right) \\ $$$$\mathrm{K}+\mathrm{L}=\mathrm{5}+\mathrm{7}=\mathrm{12} \\ $$
Answered by Rasheed.Sindhi last updated on 09/Dec/22
AnOther Way...   determinant ((,(       L),( L)),(,(       K),( K)),(,(LK(10)),(LK)),((LK(100)),(LK(10)),))              ↓                    ↓              ↓   LK(100)+2LK(10)+LK=4235  LK(100+20+1)=4235  LK(121)=4235  LK=4235/121=35=5×7  L+K=5+7=12  ⊏•⊐⊏•⊐⊏•⊐⊏•⊐⊏•⊐⊏•⊐⊏•⊐⊏•⊐⊏•⊐
$$\mathrm{AnOther}\:\mathrm{Way}… \\ $$$$\begin{array}{|c|c|c|c|}{}&\hline{\:\:\:\:\:\:\:\mathrm{L}}&\hline{\:\mathrm{L}}\\{}&\hline{\:\:\:\:\:\:\:\mathrm{K}}&\hline{\:\mathrm{K}}\\{}&\hline{\mathrm{LK}\left(\mathrm{10}\right)}&\hline{\mathrm{LK}}\\{\mathrm{LK}\left(\mathrm{100}\right)}&\hline{\mathrm{LK}\left(\mathrm{10}\right)}&\hline{}\\\hline\end{array}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\downarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\downarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\downarrow \\ $$$$\:\mathrm{LK}\left(\mathrm{100}\right)+\mathrm{2LK}\left(\mathrm{10}\right)+\mathrm{LK}=\mathrm{4235} \\ $$$$\mathrm{LK}\left(\mathrm{100}+\mathrm{20}+\mathrm{1}\right)=\mathrm{4235} \\ $$$$\mathrm{LK}\left(\mathrm{121}\right)=\mathrm{4235} \\ $$$$\mathrm{LK}=\mathrm{4235}/\mathrm{121}=\mathrm{35}=\mathrm{5}×\mathrm{7} \\ $$$$\mathrm{L}+\mathrm{K}=\mathrm{5}+\mathrm{7}=\mathrm{12} \\ $$$$\sqsubset\bullet\sqsupset\sqsubset\bullet\sqsupset\sqsubset\bullet\sqsupset\sqsubset\bullet\sqsupset\sqsubset\bullet\sqsupset\sqsubset\bullet\sqsupset\sqsubset\bullet\sqsupset\sqsubset\bullet\sqsupset\sqsubset\bullet\sqsupset \\ $$
Answered by manxsol last updated on 09/Dec/22

Leave a Reply

Your email address will not be published. Required fields are marked *